【題目】如圖,D為等邊△ABC邊BC上一點(diǎn),DE⊥AB于E,若BD:CD=2:1,DE=2, 求AE.
【答案】4
【解析】試題分析:由等邊三角的性質(zhì)可得:AB=BC,∠B=60°,由DE⊥AB于E,可得:∠DEB=90°,∠BDE=30°,由直角三角形中30°角所對(duì)的直角邊等于斜邊的一半,可得:BD=2BE,然后由勾股定理可求BE和BD的值,再由BD:CD=2:1,可求CD的長(zhǎng),進(jìn)而確定BC的長(zhǎng),由AB=BC即可求出AE的長(zhǎng).
試題解析:∵△ABC是等邊三角形,
∴AB=BC,∠B=60°,
∵DE⊥AB于E,
∴∠DEB=90°,
∴∠BDE=30°,
∴BD=2BE,
在Rt△BDE中,設(shè)BE=x,則BD=2x,
∵DE=2,
由勾股定理得:(2x)2﹣x2=(2)2 ,
解得:x=2,
所以BE=2,BD=4,
∵BD:CD=2:1,
∴CD=2,
∴BC=BD+CD=6,
∵AB=BC,
∴AB=6,
∵AE=AB﹣BE
∴AE=6﹣2=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從謝家集到田家庵有3路,121路,26路三條不同的公交線(xiàn)路.為了解早高峰期間這三條線(xiàn)路上的公交車(chē)從謝家集到田家庵的用時(shí)時(shí)間,在每條線(xiàn)路上隨機(jī)選取了450個(gè)班次的公交車(chē),收集了這些班次的公交車(chē)用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:
用時(shí)的頻數(shù) 用時(shí) 線(xiàn)路 | 合計(jì) | |||
3路 | 260 | 167 | 23 | 450 |
121路 | 160 | 166 | 124 | 450 |
26路 | 50 | 122 | 278 | 450 |
早高峰期間,乘坐__________(“3路”,“121路”或“26路”)線(xiàn)路上的公交車(chē),從謝家集到田家庵“用時(shí)不超過(guò)50分鐘”的可能性最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點(diǎn)C落在DP(P為AB的中點(diǎn))所在的直線(xiàn)上,得到經(jīng)過(guò)點(diǎn)D的折痕DE,若菱形邊長(zhǎng)為1,則點(diǎn)E到CD的距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A′B′C,M是BC的中點(diǎn),P是A′B′的中點(diǎn),連接PM,若BC=2,∠BAC=30°,則線(xiàn)段PM的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)解不等式:,并把它的解集表示在數(shù)軸上;
(2)解不等式組,并寫(xiě)出它的所有非負(fù)整數(shù)解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點(diǎn)D在線(xiàn)段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作∠ADE=40°,DE交線(xiàn)段AC于E.
(1)當(dāng)∠BDA=115°時(shí),∠EDC= °,∠DEC= °;點(diǎn)D從B向C運(yùn)動(dòng)時(shí),∠BDA逐漸變 (填“大”或“小”);
(2)當(dāng)DC等于多少時(shí),△ABD≌△DCE,請(qǐng)說(shuō)明理由;
(3)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,△ADE的形狀可以是等腰三角形嗎?若可以,請(qǐng)直接寫(xiě)出∠BDA的度數(shù).若不可以,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,過(guò)點(diǎn)作射線(xiàn)AD//BC,點(diǎn)從點(diǎn)出發(fā)沿射線(xiàn)以的速度運(yùn)動(dòng).同時(shí)點(diǎn)從點(diǎn)出發(fā)沿射線(xiàn)以的速度運(yùn)動(dòng).連結(jié)交于點(diǎn),設(shè)點(diǎn)運(yùn)動(dòng)時(shí)間為.
(1)求證:AG=BG.
(2)求AE+CF的長(zhǎng)(用含t的代數(shù)式表示).
(3)設(shè)的面積為,直接寫(xiě)出當(dāng)時(shí),的面積(且含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】太陽(yáng)能光伏發(fā)電因其清潔、安全、便利、高效等特點(diǎn),已成為世界各國(guó)普遍關(guān)注和重點(diǎn)發(fā)展的新興產(chǎn)業(yè),如圖是太陽(yáng)能電池板支撐架的截面圖,其中的粗線(xiàn)表示支撐角鋼,太陽(yáng)能電池板與支撐角鋼AB的長(zhǎng)度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺(tái)面接觸點(diǎn)分別為D,F(xiàn),CD垂直于地面,于點(diǎn)E.兩個(gè)底座地基高度相同(即點(diǎn)D,F(xiàn)到地面的垂直距離相同),均為30cm,點(diǎn)A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長(zhǎng)度各是多少cm(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)“綠水青山就是金山銀山”的環(huán)保建設(shè),提高企業(yè)的治污能力某大型企業(yè)準(zhǔn)備購(gòu)買(mǎi)A,B兩種型號(hào)的污水處理設(shè)備共8臺(tái),若購(gòu)買(mǎi)A型設(shè)備2臺(tái),B型設(shè)備3臺(tái)需34萬(wàn)元;購(gòu)買(mǎi)A型設(shè)備4臺(tái),B型設(shè)備2臺(tái)需44萬(wàn)元.
(1)求A,B兩種型號(hào)的污水處理設(shè)備的單價(jià)各是多少?
(2)已知一臺(tái)A型設(shè)備一個(gè)月可處理污水220噸,B型設(shè)備一個(gè)月可處理污水190噸,若該企業(yè)每月處理的污水不低于1700噸,請(qǐng)你為該企業(yè)設(shè)計(jì)一種最省錢(qián)的購(gòu)買(mǎi)方案.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com