【題目】(2016重慶市第26題)如圖1,二次函數(shù)的圖象與一次函數(shù)y=kx+b(k≠0)的圖象交于A,B兩點,點A的坐標(biāo)為(0,1),點B在第一象限內(nèi),點C是二次函數(shù)圖象的頂點,點M是一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點,過點B作x軸的垂線,垂足為N,且S△AMO:S四邊形AONB=1:48.
(1)求直線AB和直線BC的解析式;
(2)點P是線段AB上一點,點D是線段BC上一點,PD//x軸,射線PD與拋物線交于點G,過點P作PE⊥x軸于點E,PF⊥BC于點F,當(dāng)PF與PE的乘積最大時,在線段AB上找一點H(不與點A,點B重合),使GH+BH的值最小,求點H的坐標(biāo)和GH+BH的最小值;
(3)如圖2,直線AB上有一點K(3,4),將二次函數(shù)沿直線BC平移,平移的距離是t(t≥0),平移后拋物線使點A,點C的對應(yīng)點分別為點A’,點C’;當(dāng)△A’C’K是直角三角形時,求t的值。
【答案】(1)、=x+1;=2x-5;(2)、H(5,6);7.5;(3)、t=0或t=4或t=
【解析】
試題分析:(1)、首先得出點C的坐標(biāo),根據(jù)△AMO和四邊形AONB的面積之比得出△AMO和△BMN的面積之比,從而得出BN=7,然后求出點B的坐標(biāo),得出直線AB和直線BC的解析式;(2)、設(shè)點P(x0,x0+1),則D(,x0+1),PE=x0+1,PD=3-0.5x0,根據(jù)△PDF∽△BGN得出PE·PF最大時,PE·PD也最大,然后得出PE·PD的函數(shù)解析式,根據(jù)函數(shù)的性質(zhì)得出點G的坐標(biāo),根據(jù)△MNB是等腰直角三角形,過B作x軸的平行線,則BH=B1H,從而得出答案;(3)、令直線BC與x軸交于點I,則I(2.5,0)于是IN=3.5,IN:BN=1:2,則沿直線BC平移時,橫坐標(biāo)平移m時,縱坐標(biāo)則平移2m,平移后A’(m,1+2m),C’(2+m,-1+2m),然后根據(jù)當(dāng)∠A’KC’=90°,當(dāng)∠KC’A’=90°和當(dāng)∠KA’C’=90°三種情況,分別利用勾股定理得出答案.
試題解析:(1)、C(2,-1). 由S△AMO:S四邊形AONB=1:48,可得由S△AMO:S△BMN=1:49,
所有BN=7,帶入二次函數(shù)解析式可得B(6,7)。 所以=x+1;=2x-5.
(2)、設(shè)點P(x0,x0+1),則D(,x0+1),則PE=x0+1,PD=3-0.5x0,
由于△PDF∽△BGN,所以PF:PD的值固定,于是PE·PF最大時,PE·PD也最大,
PE·PD=(x0+1)(3-0.5x0)=,所以當(dāng)x0=2.5時,PE·PD最大,即PE·PF最大。
此時G(5,3.5)
可得△MNB是等腰直角三角形,過B作x軸的平行線,則BH=B1H,
GH+BH的最小值轉(zhuǎn)化為求GH+HB1的最小值,
所以當(dāng)GH和HB1在一條直線上時,GH+HB1的值最小,此時H(5,6),最小值為7-3.5=3.5
(3)、令直線BC與x軸交于點I,則I(2.5,0)于是IN=3.5,IN:BN=1:2,
所以沿直線BC平移時,橫坐標(biāo)平移m時,縱坐標(biāo)則平移2m,平移后A’(m,1+2m),C’(2+m,-1+2m),
則A’C’2=8,A’K2=5m2-18m+18,C’K2=5m2-22m+26,
①、當(dāng)∠A’KC’=90°時,A’K2+KC’2=A’C’2,解得m=,此時t=;
②、當(dāng)∠KC’A’=90°時,KC’2+A’C’2=A’K2,解得m=4,此時t=;
③、當(dāng)∠KA’C’=90°時,A’C’2+A’K2=KC’2,解得m=0,此時t=0
綜上所述:t=0或t=4或t=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016四川省樂山市第22題)“六一”期間,小張購進(jìn)100只兩種型號的文具進(jìn)行銷售,其進(jìn)價和售價之間的關(guān)系如下表:
(1)小張如何進(jìn)貨,使進(jìn)貨款恰好為1300元?
(2)要使銷售文具所獲利潤最大,且所獲利潤不超過進(jìn)貨價格的40%,請你幫小張設(shè)計一個進(jìn)貨方案,并求出其所獲利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)23、20、20、21、26,這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( 。
A. 21,20 B. 22,20 C. 21,26 D. 22,26
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖南省邵陽市第26題)已知拋物線y=ax2﹣4a(a>0)與x軸相交于A,B兩點(點A在點B的左側(cè)),點P是拋物線上一點,且PB=AB,∠PBA=120°,如圖所示.
(1)求拋物線的解析式.
(2)設(shè)點M(m,n)為拋物線上的一個動點,且在曲線PA上移動.
①當(dāng)點M在曲線PB之間(含端點)移動時,是否存在點M使△APM的面積為?若存在,求點M的坐標(biāo);若不存在,請說明理由.
②當(dāng)點M在曲線BA之間(含端點)移動時,求|m|+|n|的最大值及取得最大值時點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016浙江省溫州市第24題)如圖,在射線BA,BC,AD,CD圍成的菱形ABCD中,∠ABC=60°,AB=6,O是射線BD上一點,⊙O與BA,BC都相切,與BO的延長線交于點M.過M作EF⊥BD交線段BA(或射線AD)于點E,交線段BC(或射線CD)于點F.以EF為邊作矩形EFGH,點G,H分別在圍成菱形的另外兩條射線上.
(1)求證:BO=2OM.
(2)設(shè)EF>HE,當(dāng)矩形EFGH的面積為24時,求⊙O的半徑.
(3)當(dāng)HE或HG與⊙O相切時,求出所有滿足條件的BO的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山東省聊城市第17題)如圖,在平面直角坐標(biāo)系中,邊長為1的正方形OA1B1C1的兩邊在坐標(biāo)軸上,以它的對角線OB1為邊作正方形OB1B2C2,再以正方形OB1B2C2的對角線OB2為邊作正方形OB2B3C3,以此類推…、則正方形OB2015B2016C2016的頂點B2016的坐標(biāo)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com