【題目】已知:△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°.連接AD,BC,點H為BC中點,連接OH.

(1)如圖1所示,易證:OH= AD且OH⊥AD(不需證明)
(2)將△COD繞點O旋轉(zhuǎn)到圖2,圖3所示位置時,線段OH與AD又有怎樣的關(guān)系,并選擇一個圖形證明你的結(jié)論.

【答案】
(1)證明:如圖1中,

∵△OAB與△OCD為等腰直角三角形,∠AOB=∠COD=90°,

∴OC=OD,OA=OB,

∵在△AOD與△BOC中,

,

∴△AOD≌△BOC(SAS),

∴∠ADO=∠BCO,∠OAD=∠OBC,

∵點H為線段BC的中點,

∴OH=HB,

∴∠OBH=∠HOB=∠OAD,

又因為∠OAD+∠ADO=90°,

所以∠ADO+∠BOH=90°,

所以O(shè)H⊥AD


(2)解:①結(jié)論:OH= AD,OH⊥AD,如圖2中,延長OH到E,使得HE=OH,連接BE,

易證△BEO≌△ODA

∴OE=AD

∴OH= OE= AD

由△BEO≌△ODA,知∠EOB=∠DAO

∴∠DAO+∠AOH=∠EOB+∠AOH=90°,

∴OH⊥AD.

②如圖3中,結(jié)論不變.延長OH到E,使得HE=OH,連接BE,延長EO交AD于G.

易證△BEO≌△ODA

∴OE=AD

∴OH= OE= AD

由△BEO≌△ODA,知∠EOB=∠DAO

∴∠DAO+∠AOF=∠EOB+∠AOG=90°,

∴∠AGO=90°

∴OH⊥AD.


【解析】(2)利用第1題的解題方法,要證OH= AD即AD=2OH,因此須延長OH一倍,連結(jié)BE,構(gòu)造全等三角形△BEO≌△ODA即可證得.
【考點精析】通過靈活運用等腰直角三角形和旋轉(zhuǎn)的性質(zhì),掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某市電力部門對一般照明用電實行階梯電價收費,具體收費標準如下:

第一檔:月用電量不超過200度的部分的電價為每度元.

第二檔:月用電量超過200度但不超過400度部分的電價為每度元.

第三檔:月用電量超過400度的部分的電價為每度元.

已知小明家去年5月份的用電量為215度,則小明家5月份應(yīng)交電費______

若去年6月份小明家用電的平均電價為元,求小明家去年6月份的用電量.

已知小明家去年7、8月份的用電量共700月份的用電量少于8月份的用電量,兩個月的總電價是384元,求小明家7、8月的用電量分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是⊙O的切線,B為切點,連接DO與⊙O交于點C,AB為⊙O的直徑,連接CA,若∠D=30°,⊙O的半徑為4,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中有一邊長為l的正方形OABC,邊OA、OC分別在x軸、y軸上,如果以對角線OB為邊作第二個正方形OBB1C1,再以對角線OBl為邊作第三個正方形OBlB2C2,照此規(guī)律作下去,則點B2020的坐標為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了打造區(qū)域中心城市,實現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計劃有序推進.花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計劃每小時挖掘土石方540m3 , 現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關(guān)信息如下表所示:

租金(單位:元/時)

挖掘土石方量(單位:m3/時)

甲型挖掘機

100

60

乙型挖掘機

120

80

1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?

2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定:橫、縱坐標相等的點叫做完美點”.

(1)若點A(x,y)完美點,且滿足x+y=4,求點A的坐標;

(2)如圖1,在平面直角坐標系中,四邊形OABC是正方形,點A坐標為(0,4),連接OB,E點從OB運動,速度為2個單位/秒,到B點時運動停止,設(shè)運動時間為t.

①不管t為何值,E點總是完美點”;

②如圖2,連接AE,過E點作PQx軸分別交AB、OCP、Q兩點,過點EEFAEx軸于點F,問:當E點運動時,四邊形AFQP的面積是否發(fā)生變化?若不改變,求出面積的值;若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠ACB=90°,點D與點BAC同側(cè),∠DAC>∠BAC,且DA=DC,過點BBEDADC于點E,過EEMACAB于點M,連結(jié)MD.

1)當ADC=80°時,求∠CBE的度數(shù).

2)當ADC=α:

①求證:BE=CE.

②求證:ADM=CDM.

③當α為多少度時,DM=EM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,Am,0)、Bm+1,0)、E20),其中-1≤m≤2,分別以AB、OE為邊向上作正方形ABCDOEFG.

1)請直接寫出線段AB的長;

2)正方形ABCD沿x軸正半軸運動過程中與正方形OEFG重疊部分面積為S,求Sm的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于a,b的多項式2a2-2ab-b2-a2+mab+2b2).

1)若合并后不含有ab項,求m的值;

2)在(1)的條件下,當a=-3,b=時,求代數(shù)式的值.

查看答案和解析>>

同步練習冊答案