【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長(zhǎng)線上,且∠CBF=∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF=,求BC和BF的長(zhǎng).
【答案】(1)證明見解析;(2)BC=;.
【解析】(1)連接AE,利用直徑所對(duì)的圓周角是直角,從而判定直角三角形,利用直角三角形兩銳角相等得到直角,從而證明∠ABF=90°.
(2)利用已知條件證得△AGC∽△ABF,利用比例式求得線段的長(zhǎng)即可.
(1)證明:連接AE,
∵AB是⊙O的直徑,
∴∠AEB=90°,
∴∠1+∠2=90°.
∵AB=AC,
∴∠1=∠CAB.
∵∠CBF=∠CAB,
∴∠1=∠CBF
∴∠CBF+∠2=90°
即∠ABF=90°
∵AB是⊙O的直徑,
∴直線BF是⊙O的切線.
(2)解:過點(diǎn)C作CG⊥AB于G.
∵sin∠CBF=,∠1=∠CBF,
∴sin∠1=,
∵在Rt△AEB中,∠AEB=90°,AB=5,
∴BE=ABsin∠1=,
∵AB=AC,∠AEB=90°,
∴BC=2BE=2,
在Rt△ABE中,由勾股定理得AE==2,
∴sin∠2===,cos∠2===,
在Rt△CBG中,可求得GC=4,GB=2,
∴AG=3,
∵GC∥BF,
∴△AGC∽△ABF,
∴=.
∴BF==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形為正方形,,點(diǎn)為對(duì)角線上一動(dòng)點(diǎn),連接,過點(diǎn)作.交于點(diǎn),以、為鄰邊作矩形,連接.
(1)求證:矩形是正方形;
(2)探究:的值是否為定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把兩個(gè)大小一樣的直角三角形重疊在一起,將其中一個(gè)三角形沿著點(diǎn)B到C方向平移到三角形DEF的位置,AB=9,DH=3,平移距離為4,則陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇準(zhǔn)備完成題目:化簡(jiǎn):,發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)他把“”猜成3,請(qǐng)你化簡(jiǎn):(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說:“你猜錯(cuò)了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).”通過計(jì)算說明原題中“”是幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班購(gòu)買一些乒乓球和乒乓球拍,了解信息如下:甲、乙兩家商店出售同種品牌的乒乓球和乒乓球拍,乒乓球拍每副定價(jià)30元,乒乓球每盒定價(jià)5元.經(jīng)洽談,甲店每買一副球拍贈(zèng)一盒乒乓球,乙店全部按定價(jià)的9折出售,該班需球拍5副,乒乓球若干盒(不少于5盒)問:
(1)當(dāng)購(gòu)買乒乓球x盒時(shí),兩種優(yōu)惠辦法各應(yīng)付款多少元?(用含x的代數(shù)式表示).
(2)如果要購(gòu)買15盒乒乓球,請(qǐng)你去辦這件事,你打算去哪家商店購(gòu)買?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)律探究,觀察下列等式:
第1個(gè)等式:
第2個(gè)等式:
第3個(gè)等式:
第4個(gè)等式:
請(qǐng)回答下列問題:
(1)按以上規(guī)律寫出第5個(gè)等式:= ___________ = ___________
(2)用含n的式子表示第n個(gè)等式:= ___________ = ___________(n為正整數(shù))
(3)求
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x,y 的二元一次方程組的解都是正數(shù).
(1)求a的取值范圍;
(2)化簡(jiǎn):;
(3)若上述二元一次方程組的解是一個(gè)等腰三角形的一條腰和底邊的長(zhǎng),且這個(gè)等腰三角形的周長(zhǎng)為12,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1四邊形中,平分,;
(1)試說明與的位置關(guān)系,并予以證明:
(2)如圖2,若,作平分交于,平分交于,求的度數(shù).
(3)如圖3,若若是下一點(diǎn),平分,,平分若下列結(jié)論:①的值不變;②的度數(shù)不變;可以證明只有一個(gè)是正確的,請(qǐng)你作出正確的選擇并求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)抽取某理發(fā)店一周的營(yíng)業(yè)額如下表(單位:元):
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | 合計(jì) |
540 | 680 | 760 | 640 | 960 | 2200 | 1780 | 7560 |
(1)求該店本周的日平均營(yíng)業(yè)額.
(2)如果用該店本周星期一到星期五的日平均營(yíng)業(yè)額估計(jì)當(dāng)月的營(yíng)業(yè)總額,你認(rèn)為是否合理?如果合理,請(qǐng)說明理由;如果不合理,請(qǐng)?jiān)O(shè)計(jì)一個(gè)方案,并估計(jì)該店當(dāng)月(按30天計(jì)算)的營(yíng)業(yè)總額.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com