【題目】如圖:順次連接矩形A1B1C1D1四邊的中點(diǎn)得到四邊形A2B2C2D2,再順次連接四邊形A2B2C2D2四邊的中點(diǎn)得四邊形A3B3C3D3,…,按此規(guī)律得到四邊形AnBnCnDn.若矩形A1B1C1D1的面積為24,那么四邊形A2019B2019C2019D2019的面積為_____

【答案】

【解析】

根據(jù)已知條件可得四邊形A2B2C2D2的面積=矩形A1B1C1D1的面積;四邊形A3B3C3D3=四邊形A2B2C2D2的面積=矩形A1B1C1D1的面積;由此可得四邊形AnBnCnDn的面積= 矩形A1B1C1D1的面積.根據(jù)所得規(guī)律求解即可.

∵四邊形A1B1C1D1是矩形,

∴∠A1=∠B1=∠C1=∠D1=90°,A1B1=C1D1,B1C1=A1D1;

又∵各邊中點(diǎn)是A2、B2、C2、D2

∴四邊形A2B2C2D2的面積=S△A1A2D2+S△C2D1D2+S△C1B2C2+S△B1B2A2

=A1D1A1B1×4=矩形A1B1C1D1的面積,

即四邊形A2B2C2D2的面積=矩形A1B1C1D1的面積;

同理,得四邊形A3B3C3D3=四邊形A2B2C2D2的面積=矩形A1B1C1D1的面積;

以此類推,四邊形AnBnCnDn的面積= 矩形A1B1C1D1的面積.

又∵矩形A1B1C1D1的面積為24,

四邊形A2019B2019C2019D2019的面積為.

故答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l1y=2x+1與坐標(biāo)軸交于AC兩點(diǎn),直線l2y=x2與坐標(biāo)軸交于B、D兩點(diǎn),兩線的交點(diǎn)為P點(diǎn),

1)求出點(diǎn)P的坐標(biāo);

2)求△APB的面積;

3)在x軸上是否存在點(diǎn)Q,使得△OPQ的面積等于6,若存在,求出Q點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,延長(zhǎng)BC至點(diǎn)D,使DC=CB,延長(zhǎng)DA

與⊙O的另一個(gè)交點(diǎn)為E,連結(jié)AC,CE。

1)求證:B=D;

2)若AB=4BC-AC=2,求CE的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一拋物線形大門,其地面寬度一同學(xué)站在門內(nèi),在離門腳點(diǎn)遠(yuǎn)的處,垂直地面立

起一根長(zhǎng)的木桿,其頂端恰好頂在拋物線形門上處.根據(jù)這些條件,請(qǐng)你求出該大門的高

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車專賣店經(jīng)銷某種型號(hào)的汽車.已知該型號(hào)汽車的進(jìn)價(jià)為15萬(wàn)元/輛,經(jīng)銷一段時(shí)間后發(fā)現(xiàn):當(dāng)該型號(hào)汽車售價(jià)定為25萬(wàn)元/輛時(shí),平均每周售出8輛;售價(jià)每降低0.5萬(wàn)元,平均每周多售出1輛.

1)當(dāng)售價(jià)為22萬(wàn)元/輛時(shí),求平均每周的銷售利潤(rùn).

2)若該店計(jì)劃平均每周的銷售利潤(rùn)是90萬(wàn)元,為了盡快減少庫(kù)存,求每輛汽車的售價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知反比例函數(shù)的圖像與一正比例函數(shù)的圖像相交于點(diǎn),點(diǎn)的坐標(biāo)是.

1)求正比例函數(shù)的解析式;

2)若正比例函數(shù)的圖像與反比例函數(shù)的圖像在第一象限內(nèi)交于點(diǎn),過(guò)點(diǎn)軸的垂線,為垂足,且交直線于點(diǎn),過(guò)點(diǎn)軸的垂線,為垂足,求梯形的面積;

3)連結(jié),求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】菱形ABCD的邊長(zhǎng)是4,∠ABC=120°,點(diǎn)M、N分別在邊AD、AB上,且MN⊥AC,垂足為P,把△AMN沿MN折疊得到△AˊMN,若△AˊDC恰為等腰三角形,則AP的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)分別同時(shí)開(kāi)挖兩段河渠,所挖河渠的長(zhǎng)度y(m)與挖掘時(shí)間x(h)之間的關(guān)系如圖所示.根據(jù)圖象所提供的信息有:①甲隊(duì)挖掘30m時(shí),用了3h;②挖掘6h時(shí)甲隊(duì)比乙隊(duì)多挖了10m;③乙隊(duì)的挖掘速度總是小于甲隊(duì);④開(kāi)挖后甲、乙兩隊(duì)所挖河渠長(zhǎng)度相等時(shí),x=4.其中一定正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC是三邊都不相等的三角形,點(diǎn)O和點(diǎn)P是這個(gè)三角形內(nèi)部?jī)牲c(diǎn).
1)如圖①,如果點(diǎn)P是這個(gè)三角形三個(gè)內(nèi)角平分線的交點(diǎn),那么∠BPC和∠BAC有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
2)如圖②,如果點(diǎn)O是這個(gè)三角形三邊垂直平分線的交點(diǎn),那么∠BOC和∠BAC有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
3)如圖③,如果點(diǎn)P(三角形三個(gè)內(nèi)角平分線的交點(diǎn)),點(diǎn)O(三角形三邊垂直平分線的交點(diǎn))同時(shí)在不等邊△ABC的內(nèi)部,那么∠BPC和∠BOC有怎樣的數(shù)量關(guān)系?請(qǐng)直接回答.

查看答案和解析>>

同步練習(xí)冊(cè)答案