【題目】某公司有員工50人,為了提高經(jīng)濟效益,決定引進一條新的生產(chǎn)線并從現(xiàn)有員工中抽調(diào)一部分員工到新的生產(chǎn)線上工作,經(jīng)調(diào)查發(fā)現(xiàn):分工后,留在原生產(chǎn)線上工作的員工每月人均產(chǎn)值提高40%;到新生產(chǎn)線上工作的員工每月人均產(chǎn)值為原來的3倍,設抽調(diào)x人到新生產(chǎn)線上工作.
(1)填空:若分工前員工每月的人均產(chǎn)值為a元,則分工后,留在原生產(chǎn)線上工作的員工每月人均產(chǎn)值是元,每月的總產(chǎn)值是元;到新生產(chǎn)線上工作的員工每月人均產(chǎn)值是元,每月的總產(chǎn)值是元;
(2)分工后,若留在原生產(chǎn)線上的員工每月生產(chǎn)的總產(chǎn)值不少于分工前原生產(chǎn)線每月生產(chǎn)的總產(chǎn)值;而且新生產(chǎn)線每月生產(chǎn)的總產(chǎn)值又不少于分工前生產(chǎn)線每月生產(chǎn)的總產(chǎn)值的一半.問:抽調(diào)的人數(shù)應該在什么范圍?

【答案】
(1)(1+40%)a;(50﹣x)(1+40%)a;3a;3ax
(2)解:由題可得不等式組 (其中a>0)

解得 ≤x≤14

由于x只能取正整數(shù),

所以抽調(diào)的人數(shù)應在9﹣14人之間(包括9人和14人)


【解析】解:(1)根據(jù)題意填空:(1+40%)a,(50﹣x)(1+40%)a,3a,3ax.
【考點精析】根據(jù)題目的已知條件,利用一元一次不等式組的應用的相關知識可以得到問題的答案,需要掌握1、審:分析題意,找出不等關系;2、設:設未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗:從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為完成下列任務,你認為采用什么調(diào)查方式最合適?

(1)了解某市居民的年人均收入;

(2)了解某班學生期末考試的數(shù)學成績;

(3)了解一個月內(nèi)某城市一條道路的車流量;

(4)了解某電視臺一個娛樂節(jié)目的收視率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,平行四邊形ABOC如圖放置,點AC的坐標分別是(0,4)、(﹣1,0),將此平行四邊形繞點O順時針旋轉90°,得到平行四邊形ABOC′.

(1)若拋物線經(jīng)過點C、A、A,求此拋物線的解析式;

(2)點M時第一象限內(nèi)拋物線上的一動點,問:當點M在何處時,AMA的面積最大?最大面積是多少?并求出此時M的坐標;

(3)若P為拋物線上一動點,Nx軸上的一動點,點Q坐標為(1,0),當P、N、B、Q構成平行四邊形時,求點P的坐標,當這個平行四邊形為矩形時,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把多項式m2(a-2)+m(2-a)分解因式,結果正確的是(   )

A. m(a-2)(m+1) B. m(a-2)(m-1) C. m(2-a)(m-1) D. m(2-a)(m+1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】改革開放40年來,我國高速鐵路有無到有,實現(xiàn)高速發(fā)展,截止到201811月,我國高鐵營業(yè)里程達到29000公里,超過世界高鐵總里程的三分之二.將29000用科學記數(shù)法表示應為( 。

A. 2.9×104B. 2.9×103C. 0.29×105D. 29×103

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若(x+k)(x﹣4)的積中不含有x的一次項,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把矩形紙片ABCD置于直角坐標系中,ABx軸,BCy軸,AB=4,BC=3,點B(5,1)翻折矩形紙片使點A落在對角線DB上的H處得折痕DG

(1)求AG的長;

(2)在坐標平面內(nèi)存在點Mm,-1)使AM+CM最小,求出這個最小值;

(3)求線段GH所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點E,且AB=AE,延長AB與DE的延長線交于點F.下列結論中:①△ABC≌△AED;②△ABE是等邊三角形;③AD=AF;④SABE=SCDE;⑤SABE=SCEF . 其中正確的是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一個長小形鐵皮剪去一個小正方形.
(1)用含有a,b的代數(shù)式表示余下陰影部分的面積;
(2)當a=6,b=2時,求余下陰影部分的面積.

查看答案和解析>>

同步練習冊答案