如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于A(﹣2,m),B
(4,﹣2)兩點,與x軸交于C點,過A作AD⊥x軸于D.
(1)求這兩個函數(shù)的解析式:
(2)求△ADC的面積.
解:(1)∵反比例函數(shù)的圖象過B(4,﹣2)點,∴k=4×(﹣2)=﹣8。
∴反比例函數(shù)的解析式為。
∵反比例函數(shù)的圖象過點A(﹣2,m),∴!郃(﹣2,4)。
∵一次函數(shù)y=ax+b的圖象過A(﹣2,4),B(4,﹣2)兩點,
∴,解得。
∴一次函數(shù)的解析式為y=﹣x+2。
(2)∵直線AB:y=﹣x+2交x軸于點C,∴C(2,0)。
∵AD⊥x軸于D,A(﹣2,4),∴CD=2﹣(﹣2)=4,AD=4。
∴S△ADC=•CD•AD=×4×4=8。
解析試題分析:(1)因為反比例函數(shù)過A、B兩點,所以可求其解析式和m的值,從而知A點坐標(biāo),進而求一次函數(shù)解析式。
(2)先求出直線AB與與x軸的交點C的坐標(biāo),再根據(jù)三角形的面積公式求解即可!
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:一次函數(shù)y=2x+1與y軸交于點C,點A(1,n)是該函數(shù)與反比例函數(shù)在第一象限內(nèi)的交點.
(1)求點的坐標(biāo)及的值;
(2)試在軸上確定一點,使,求出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD為正方形.點A的坐標(biāo)為(0,2),點B的坐標(biāo)為(0,-3),反比例函數(shù)的圖象經(jīng)過點C,一次函數(shù)的圖象經(jīng)過點C,一次函數(shù)的圖象經(jīng)過點A,
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)求點P是反比例函數(shù)圖象上的一點,△OAP的面積恰好等于正方形ABCD的面積,求P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,點A(1,a)在反比例函數(shù)(x>0)的圖象上,AB垂直于x軸,垂足為點B,將△ABO沿x軸向右平移2個單位長度,得到Rt△DEF,點D落在反比例函數(shù)(x>0)的圖象上.
(1)求點A的坐標(biāo);
(2)求k值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=kx的圖象與反比例函數(shù)的圖象有一個交點A(m,2).
(1)求m的值;
(2)求正比例函數(shù)y=kx的解析式;
(3)試判斷點B(2,3)是否在正比例函數(shù)圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年廣東梅州8分)已知,一次函數(shù)y=x+1的圖象與反比例函數(shù)的圖象都經(jīng)過點A(a,2).
(1)求a的值及反比例函數(shù)的表達式;
(2)判斷點B是否在該反比例函數(shù)的圖象上,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某公司從2009年開始投入技術(shù)改造資金,經(jīng)技術(shù)改進后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如表:
年度 | 2009 | 2010 | 2011 | 2012 |
投入技改資金x(萬元) | 2.5 | 3 | 4 | 4.5 |
產(chǎn)品成本y(萬元/件) | 7.2 | 6 | 4.5 | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x的圖像與反比例函數(shù)的圖象交于A、B兩點。
①根據(jù)圖象求K的值
②點P在y軸上,且滿足以點A、B、P為頂點的三角形是直角三角形,試寫出點P所有可能的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
如圖,AB∥CD,AF交CD于點O,且OF平分∠EOD,如果∠A=34°,那么∠EOD的度數(shù)是( )
A.34° | B.68° | C.102° | D.146° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com