如圖,△ABE和△ADC是△ABC分別沿著AB、AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為_(kāi)_______度.

80
分析:根據(jù)三角形的內(nèi)角和和折疊的性質(zhì)計(jì)算即可.
解答:∵∠1:∠2:∠3=28:5:3,
∴設(shè)∠1=28x,∠2=5x,∠3=3x,
由∠1+∠2+∠3=180°得:
28x+5x+3x=180°,
解得x=5,
故∠1=28×5=140°,∠2=5×5=25°,∠3=3×5=15°,
∵△ABE和△ADC是△ABC分別沿著AB、AC邊翻折180°形成的,
∴∠DCA=∠E=∠3=15°,∠2=∠EBA=∠D=25°,∠4=∠EBA+∠E=25°+15°=40°,
∠5=∠2+∠3=25°+15°=40°,
故∠EAC=∠4+∠5=40°+40°=80°,
在△EGF與△CAF中,∠E=∠DCA,∠DFE=∠CFA,
∴△EGF∽△CAF,
∴α=∠EAC=80°.
故填80°.
點(diǎn)評(píng):本題考查圖形的折疊變化及三角形的內(nèi)角和定理.關(guān)鍵是要理解折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,只是位置變化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC=150°,則∠θ的度數(shù)是
60
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC=150°,則∠θ的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABE和△BCD都是等邊三角形,且每個(gè)角是60°,那么線段AD與EC有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABE和△ACD中,給出以下四個(gè)論斷:
(1)AD=AE;(2)AB=AC;(3)AM=AN;(4)AD⊥DC,AE⊥BE.
請(qǐng)你以其中三個(gè)論斷為已知,剩下的一個(gè)作為要證明的結(jié)論,并寫(xiě)出證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABE和△ACD有公共點(diǎn)A,∠BAC=∠DAE=90°,AB=AC,AE=AD,延長(zhǎng)BE分別交AC、CD于點(diǎn)M、F.求證:
(1)△ABE≌△ACD;
(2)BF⊥CD.

查看答案和解析>>

同步練習(xí)冊(cè)答案