【題目】如圖,長(zhǎng)方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線(xiàn)y=ax2+bx經(jīng)過(guò)點(diǎn)B(1,4)和點(diǎn)E(3,0)兩點(diǎn).

(1)求拋物線(xiàn)的解析式;

(2)若點(diǎn)D在線(xiàn)段OC上,且BD⊥DE,BD=DE,求D點(diǎn)的坐標(biāo);

(3)在條件(2)下,在拋物線(xiàn)的對(duì)稱(chēng)軸上找一點(diǎn)M,使得△BDM的周長(zhǎng)為最小,并求△BDM周長(zhǎng)的最小值及此時(shí)點(diǎn)M的坐標(biāo);

(4)在條件(2)下,從B點(diǎn)到E點(diǎn)這段拋物線(xiàn)的圖象上,是否存在一個(gè)點(diǎn)P,使得△PAD的面積最大?若存在,請(qǐng)求出△PAD面積的最大值及此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)y=2x2+6x;(2)D(0,1);(3)BDM的周長(zhǎng)最小值為,M(,);(4)點(diǎn)P的坐標(biāo)為(,).

【解析】

試題分析:(1)將點(diǎn)B(1,4),E(3,0)的坐標(biāo)代入拋物線(xiàn)的解析式,得到關(guān)于a、b的方程組,求得a、b的值,從而可得到拋物線(xiàn)的解析式;(2)依據(jù)同角的余角相等證明BDC=DE0,然后再依據(jù)AAS證明BDC≌△DEO,從而得到OD=AO=1,于是可求得點(diǎn)D的坐標(biāo);(3)作點(diǎn)B關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)B,連接BD交拋物線(xiàn)的對(duì)稱(chēng)軸與點(diǎn)M.先求得拋物線(xiàn)的對(duì)稱(chēng)軸方程,從而得到點(diǎn)B的坐標(biāo),由軸對(duì)稱(chēng)的性質(zhì)可知當(dāng)點(diǎn)D、M、B在一條直線(xiàn)上時(shí),BMD的周長(zhǎng)有最小值,依據(jù)兩點(diǎn)間的距離公式求得BD和BD的長(zhǎng)度,從而得到三角形的周長(zhǎng)最小值,然后依據(jù)待定系數(shù)法求得D、B的解析式,然后將點(diǎn)M的橫坐標(biāo)代入可求得點(diǎn)M的縱坐標(biāo);(4)過(guò)點(diǎn)F作FGx軸,垂足為G.設(shè)點(diǎn)F(a,2a2+6a),則OG=a,F(xiàn)G=2a2+6a.然后依據(jù)SFDA=S梯形DOGFSODASAGF的三角形的面積與a的函數(shù)關(guān)系式,然后依據(jù)二次函數(shù)的性質(zhì)求解即可.

試題解析:(1)將點(diǎn)B(1,4),E(3,0)的坐標(biāo)代入拋物線(xiàn)的解析式得:,

解得:a=-2,b=6,

拋物線(xiàn)的解析式為y=2x2+6x.

(2)如圖1所示;

BDDE,

∴∠BDE=90°

∴∠BDC+EDO=90°

∵∠ODE+DEO=90°

∴∠BDC=DE0.

BDC和DOE中,,

∴△BDC≌△DEO.

OD=AO=1.

D(0,1).

(3)如圖2所示:作點(diǎn)B關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)B,連接BD交拋物線(xiàn)的對(duì)稱(chēng)軸與點(diǎn)M.

x==,

點(diǎn)B的坐標(biāo)為(2,4).

點(diǎn)B與點(diǎn)B關(guān)于x=對(duì)稱(chēng),

MB=BM.

DM+MB=DM+MB

當(dāng)點(diǎn)D、M、B在一條直線(xiàn)上時(shí),MD+MB有最小值(即BMD的周長(zhǎng)有最小值).

由兩點(diǎn)間的距離公式可知:BD=,DB=,

∴△BDM的最小值=

設(shè)直線(xiàn)BD的解析式為y=kx+b.

將點(diǎn)D、B的坐標(biāo)代入得:,

解得:k=,b=1.

直線(xiàn)DB的解析式為y=x+1.

將x=代入得:y=

M().

(4)如圖3所示:過(guò)點(diǎn)F作FGx軸,垂足為G.

設(shè)點(diǎn)F(a,2a2+6a),則OG=a,F(xiàn)G=2a2+6a.

S梯形DOGF=(OD+FG)OG=2a2+6a+1)×a=a3+3a2+a,SODA=ODOA=×1×1=,SAGF=AGFG=a3+4a23a,

SFDA=S梯形DOGFSODASAGF=a2+a

當(dāng)a=時(shí),SFDA的最大值為

點(diǎn)P的坐標(biāo)為(,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】尤秀同學(xué)遇到了這樣一個(gè)問(wèn)題:如圖1所示,已知AF,BE是△ABC的中線(xiàn),且AF⊥BE,垂足為P,設(shè)BC=a,AC=b,AB=c.

求證:

該同學(xué)仔細(xì)分析后,得到如下解題思路:

先連接EF,利用EF為△ABC的中位線(xiàn)得到△EPF∽△BPA,故,設(shè)PF=m,PE=n,用m,n把PA,PB分別表示出來(lái),再在Rt△APE,Rt△BPF中利用勾股定理計(jì)算,消去m,n即可得證.

(1)請(qǐng)你根據(jù)以上解題思路幫尤秀同學(xué)寫(xiě)出證明過(guò)程.

(2)利用題中的結(jié)論,解答下列問(wèn)題:

在邊長(zhǎng)為3的菱形ABCD中,O為對(duì)角線(xiàn)AC,BD的交點(diǎn),E,F(xiàn)分別為線(xiàn)段AO,DO的中點(diǎn),連接BE,CF并延長(zhǎng)交于點(diǎn)M,BM,CM分別交AD于點(diǎn)G,H,如圖2所示,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)560戶(hù)居民的家庭收入情況.他從中隨機(jī)調(diào)查了一定戶(hù)數(shù)的家庭收入情況(收入取整數(shù),單位:元),并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖.

分組

頻數(shù)

百分比

600≤x<800

2

5%

800≤x<1000

6

15%

1000≤x<1200

a

40%

1200≤x<1400

9

22.5%

1400≤x<1600

b

c

1600≤x<1800

2

5%

合計(jì)

40

100%

根據(jù)以上提供的信息,解答下列問(wèn)題:

(1)頻數(shù)分布表中:a= ,b= ,c=

(2)補(bǔ)全頻數(shù)分布直方圖.

(3)請(qǐng)估計(jì)該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有多少戶(hù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD沿對(duì)角線(xiàn)BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DFBC于點(diǎn)E

1)求證:DCE≌△BFE

2)若CD=2,ADB=30°,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用________,可以很準(zhǔn)確地表示出一個(gè)位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“愛(ài)我永州”中學(xué)生演講比賽中,五位評(píng)委分別給甲、乙兩位選手的評(píng)分如下:

甲:8、7、9、8、8

乙:7、9、6、9、9

則下列說(shuō)法中錯(cuò)誤的是(

A.甲、乙得分的平均數(shù)都是8

B.甲得分的眾數(shù)是8,乙得分的眾數(shù)是9

C.甲得分的中位數(shù)是9,乙得分的中位數(shù)是6

D.甲得分的方差比乙得分的方差小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小紅同學(xué)要測(cè)量A、C兩地的距離,但A、C之間有一水池,不能直接測(cè)量,于是她在A、C同一水平面上選取了一點(diǎn)B,點(diǎn)B可直接到達(dá)A、C兩地.她測(cè)量得到AB=80米,BC=20米,ABC=120°.請(qǐng)你幫助小紅同學(xué)求出AC兩點(diǎn)之間的距離.(參考數(shù)據(jù)≈4.5, ≈4.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)圓的一些結(jié)論:①與半徑長(zhǎng)相等的弦所對(duì)的圓周角是30°;②圓內(nèi)接正六邊形的邊長(zhǎng)與該圓半徑相等;③垂直于弦的直徑平分這條弦;④平分弦的直徑垂直于弦.其中正確的是( )

A. ①②③ B. ①③④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩組數(shù)據(jù)a1a2,a3a4,a5a1-1a2-1,a3-1,a4-1,a5-1下列判斷中錯(cuò)誤的是( )

A. 平均數(shù)不相等,方差相等 B. 中位數(shù)不相等,標(biāo)準(zhǔn)差相等

C. 平均數(shù)相等,標(biāo)準(zhǔn)差不相等 D. 中位數(shù)不相等,方差相等

查看答案和解析>>

同步練習(xí)冊(cè)答案