【題目】對(duì)于有理數(shù)a、b,定義運(yùn)算:ab=a×b-a-b+1.
(1)計(jì)算5(-2)與(-2)5的值,并猜想ab與ba的大小關(guān)系;
(2)求(-3) [4(-2)]的值.
【答案】(1) ab=ba;(2)40.
【解析】
(1)先按新定義運(yùn)算,相等,按新定義分別運(yùn)算即可說(shuō)明理由;
(2)按照定義得運(yùn)算規(guī)則先計(jì)算括號(hào)內(nèi)的即可.
解:(1)5(2)=5×(2)5(2)+1=105+2+1=12,
(2)5=(2)×5(2)5+1=10+25+1=12,
猜想:ab=ba,
∵ab=a×bab+1,ba=b×aba+1;
∴ab=ba;
(2)(3) [4(2)]
=(3) [4×(2)4(2)+1]
=(3)(84+2+1)
=(3)(9)
=3×(9)(3)(9)+1
=27+3+9+1
=40.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)活動(dòng)課上,小聰同學(xué)擺弄著自己剛購(gòu)買的一套三角板,將兩塊直角三角板的直角頂點(diǎn)C疊放在一起,然后轉(zhuǎn)動(dòng)三角板,在轉(zhuǎn)動(dòng)過(guò)程中,請(qǐng)解決以下問(wèn)題:
(1)如圖(1):當(dāng)∠DCE=30°時(shí),∠ACB+∠DCE= ,若∠DCE為任意銳角時(shí),你還能求出∠ACB與∠DCE的數(shù)量關(guān)系嗎?若能,請(qǐng)求出;若不能,請(qǐng)說(shuō)明理由.
(2)當(dāng)轉(zhuǎn)動(dòng)到圖(2)情況時(shí),∠ACB與∠DCE有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有甲、乙兩個(gè)容器,分別裝有進(jìn)水管和出水管,兩容器的進(jìn)、出水速度不變,先打開(kāi)乙容器的進(jìn)水管,2分鐘時(shí)再打開(kāi)甲容器的進(jìn)水管,又過(guò)2分鐘關(guān)閉甲容器的進(jìn)水管,再過(guò)4分鐘同時(shí)打開(kāi)甲容器的進(jìn)、出水管.直到12分鐘時(shí),同時(shí)關(guān)閉兩容器的進(jìn)、出水管.打開(kāi)和關(guān)閉水管的時(shí)間忽略不計(jì).容器中的水量y(升)與乙容器注水時(shí)間x(分)之間的關(guān)系如圖所示.
(1)求甲容器的進(jìn)、出水速度;
(2)甲容器的進(jìn)、出水管都關(guān)閉后,是否存在兩容器的水量相等?若存在,求出此時(shí)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)用2730元購(gòu)進(jìn)A、B兩種新型節(jié)能日光燈共60盞,這兩種日光燈的進(jìn)價(jià)、標(biāo)價(jià)如下表所示.
價(jià)格/類型 | A型 | B型 |
進(jìn)價(jià)(元/盞) | 35 | 65 |
標(biāo)價(jià)(元/盞) | 50 | 100 |
(1)這兩種日光燈各購(gòu)進(jìn)多少盞?
(2)若A型日光燈按標(biāo)價(jià)的9折出售,要使這批日光燈全部售出后商場(chǎng)獲得810元的利潤(rùn),則B型日光燈應(yīng)按標(biāo)價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=﹣x+6與x,y軸分別交于A,B兩點(diǎn),點(diǎn)C(0,n)是y軸上一點(diǎn),把坐標(biāo)平面沿直線AC折疊,點(diǎn)B剛好落在x軸上,則點(diǎn)C的坐標(biāo)是( 。
A. (0,3) B. (0,) C. (0,) D. (0,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中將下列各點(diǎn)用線段依次連結(jié)起來(lái),能得到什么圖案?
(0,0),(-4,-2),(-3,0),(-5,-1),(-5,1),(-3,0),(-4,2),(0,0).
(1)若以上各點(diǎn)縱坐標(biāo)保持不變,橫坐標(biāo)分別加3,再將所得的點(diǎn)用線段依次連結(jié)起來(lái),所得的圖案與原來(lái)的圖案相比有什么變化?若橫坐標(biāo)不變,縱坐標(biāo)分別加3呢?
(2)連結(jié)點(diǎn)(3,3),(-1,1),(0,3),(-2,2),(-2,4),(0,3),(-1,5),(3,3),觀察所得圖案和原圖案的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點(diǎn),過(guò)點(diǎn)D作⊙O的切線交BC于點(diǎn)M,切點(diǎn)為N,則DM的長(zhǎng)為( )
A.
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下面一段文字,再回答后面的問(wèn)題.
已知在平面直角坐標(biāo)系內(nèi)兩點(diǎn)P1(x1,y1),P2(x2,y2),點(diǎn)P1,P2間的距離公式P1P2=,同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸上或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間的距離公式可簡(jiǎn)化為|x2-x1|或|y2-y1|.
(1)已知A(2,4),B(-3,-8),試求A,B兩點(diǎn)間的距離;
(2)已知各頂點(diǎn)坐標(biāo)為A(0,6),B(-3,2),C(3,2),你能判定△ABC的形狀嗎?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為1的正方形網(wǎng)格中標(biāo)有A、B、C、D、E、F六個(gè)格點(diǎn),根據(jù)圖中標(biāo)示的各點(diǎn)位置,與△ABC全等的是( 。
A. △ACF B. △ACE C. △ABD D. △CEF
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com