【題目】計算下列各題:
(1) +( 1﹣2cos60°;
(2)(2x﹣y)2﹣(x+y)(x﹣y).

【答案】
(1)解:原式=2+2﹣2× =4﹣1=3;
(2)解:原式=4x2﹣4xy+y2﹣x2+y2=3x2﹣4xy+2y2
【解析】(1)原式第一項利用算術(shù)平方根定義計算,第二項利用負整數(shù)指數(shù)冪法則計算,最后一項利用特殊角的三角函數(shù)值計算即可得到結(jié)果;(2)原式利用完全平方公式,以及平方差公式化簡,去括號合并即可得到結(jié)果.
【考點精析】認真審題,首先需要了解整數(shù)指數(shù)冪的運算性質(zhì)(aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))),還要掌握特殊角的三角函數(shù)值(分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家客廳里裝有一種三位單極開關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小明按下任意一個開關(guān)均可打開對應(yīng)的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.
(1)若小明任意按下一個開關(guān),則下列說法正確的是(
A.小明打開的一定是樓梯燈;
B.小明打開的可能是臥室燈;
C.小明打開的不可能是客廳燈;
D.小明打開走廊燈的概率是
(2)若任意按下一個開關(guān)后,再按下另兩個開關(guān)中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖法或列表法加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣ x2 x+2與x軸交于A、B兩點,與y軸交于點C

(1)求點A,B,C的坐標(biāo);
(2)點E是此拋物線上的點,點F是其對稱軸上的點,求以A,B,E,F(xiàn)為頂點的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了解學(xué)生參加體育活動的情況,對學(xué)生“平均每天參加體育活動的時間”進行了隨機抽樣調(diào)查,下圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答以下問題:
(1)“平均每天參加體育活動的時間”“為0.5~1小時”部分的扇形統(tǒng)計圖的圓心角為度;
(2)本次一共調(diào)查了名學(xué)生;
(3)將條形統(tǒng)計圖補充完整;
(4)若該校有2000名學(xué)生,你估計全?赡苡卸嗌倜麑W(xué)生平均每天參加體育活動的時間在0.5小時以下.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙A經(jīng)過點E、B、C、O,且C(0,8),E(﹣6,0),O(0,0),則cos∠OBC的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:一輛汽車在一個十字路口遇到紅燈剎車停下,汽車?yán)锏鸟{駛員看地面的斑馬線前后兩端的視角分別是∠DCA=30°和∠DCB=60°,如果斑馬線的寬度是AB=3米,駕駛員與車頭的距離是0.8米,這時汽車車頭與斑馬線的距離x是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為(
A.3:4
B.9:16
C.4:9
D.1:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,則(m﹣1)2+(n﹣1)2的最小值是(  )
A.6
B.3
C.﹣3
D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是反比例函數(shù)圖象上的兩個點.

(1)求m和k的值
(2)若點C(-1,0),連結(jié)AC,BC,求△ABC的面積
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案