.(14分) 已知:是方程
的兩個實(shí)數(shù)根,且
,拋物線
的圖像經(jīng)過點(diǎn)A(
)、B(
).
(1) 求這個拋物線的解析式;(3分)
(2) 設(shè)(1)中拋物線與軸的另一交點(diǎn)為C,拋物線的頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;(5分)
(3) P是線段OC上的一點(diǎn),過點(diǎn)P作PH⊥軸,與拋物線交于H點(diǎn),若直線BC把△PCH分成面積之比為2:3的兩部分,請求出P點(diǎn)的坐標(biāo).(6分)
(1)解方程得
由
,有
所以點(diǎn)A、B的坐標(biāo)分別為A(1,0),B(0,5).
將A(1,0), B(0,5)的坐標(biāo)分別代入.
得解這個方程組,得
所以,拋物線的解析式為
(2)由,令
,得
解這個方程,得
所以C點(diǎn)的坐標(biāo)為(-5,0).由頂點(diǎn)坐標(biāo)公式計(jì)算,得點(diǎn)D(-2,9).
過D作軸的垂線交
軸于M.
則
,
所以,.
(3)設(shè)P點(diǎn)的坐標(biāo)為()
因?yàn)榫€段BC過B、C兩點(diǎn),所以BC所在的值線方程為.
那么,PH與直線BC的交點(diǎn)坐標(biāo)為,
PH與拋物線的交點(diǎn)坐標(biāo)為
.
由題意,得①,即
解這個方程,得或
(舍去)
②,即
解這個方程,得或
(舍去)
P點(diǎn)的坐標(biāo)為或
.
解析:略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
已知:如圖,拋物線與y軸交于點(diǎn)C(0,
), 與x軸交于點(diǎn)A、 B,點(diǎn)A的坐標(biāo)為(2,0).
(1)求該拋物線的解析式;
(2)點(diǎn)P是線段AB上的動點(diǎn),過點(diǎn)P作PD∥BC,交AC于點(diǎn)D,連接CP.當(dāng)△CPD的面積最大時,求點(diǎn)P的坐標(biāo);
(3)若平行于x軸的動直線與該拋物線交于點(diǎn)Q,與直線BC交于點(diǎn)F,點(diǎn)M 的坐標(biāo)為(
,0).問:是否存在這樣的直線
,使得△OMF是等腰三角形?若存 在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+m(m為常數(shù))
經(jīng)過點(diǎn)(0,4).
(1) 求m的值;
(2) 將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個條件:它的對稱軸(設(shè)為直線l2)與平移前的拋物線的對稱軸(設(shè)為直線l1)關(guān)于y軸對稱;它所對應(yīng)的函數(shù)的最小值為-8.
① 試求平移后的拋物線的解析式;
② 試問在平移后的拋物線上是否存在點(diǎn)P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點(diǎn)P的坐標(biāo),并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
已知:如圖,拋物線與y軸交于點(diǎn)C(0,
), 與x軸交于點(diǎn)A、 B,點(diǎn)A的坐標(biāo)為(2,0).
(1)求該拋物線的解析式;
(2)點(diǎn)P是線段AB上的動點(diǎn),過點(diǎn)P作PD∥BC,交AC于點(diǎn)D,連接CP.當(dāng)△CPD的面積最大時,求點(diǎn)P的坐標(biāo);
(3)若平行于x軸的動直線與該拋物線交于點(diǎn)Q,與直線BC交于點(diǎn)F,點(diǎn)M 的坐標(biāo)為(
,0).問:是否存在這樣的直線
,使得△OMF是等腰三角形?若存 在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com