【題目】已知⊙O的半徑為3,△ABC內(nèi)接于⊙O,AB=3 ,AC=3 ,D是⊙O上一點,且AD=3,則CD的長應是( )
A.3
B.6
C.
D.3或6
【答案】D
【解析】解:第一種情況,當點D在AC弧上時,連接OA、OC、OD.
所以AD=OA=OC=OD=3,△AOD是等邊三角形,∠ADO=∠DAO=∠AOD=60°.
過O作OP垂直弦AC于P,根據(jù)垂徑定理,PA=PC= AC= .
∴在Rt△AOP中,OP= ,
∴∠OAP=30°,∠AOP=60°=∠AOD.
∴OP與OD重合,即OD垂直平分弦AC,所以CD=AD=3.
第二種情況:當點D在AB弧上時,同理得△AOD是等邊三角形,∠AOD=60°.
由(1)知∠AOC=120°.
∴∠AOD+∠AOC=180°,即D、O、C在同一直線上,故CD=6.
故選D.
【考點精析】利用勾股定理的概念和垂徑定理對題目進行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條。
科目:初中數(shù)學 來源: 題型:
【題目】某文化用品商店用2000元購進一批學生書包,面市后發(fā)現(xiàn)供不應求,商店又購進第二批同樣的書包,所購數(shù)量是第一批購進數(shù)量的3倍,但單價貴了4元,結(jié)果第二批用了6300元。
(1)求第一批購進書包的單價是多少元?
(2)若商店銷售這兩批書包時,每個售價都是120元,全部售出后,商店共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按圖填空,并注明理由.
⑴完成正確的證明:如圖,已知AB∥CD,求證:∠BED=∠B+∠D
證明:過E點作EF∥AB(經(jīng)過直線外一點有且只有一條直線與這條直線平行)
∴∠1= ( )
∵AB∥CD(已知)
∴EF∥CD(如果兩條直線與同一直線平行,那么它們也平行)
∴∠2= ( )
又∠BED=∠1+∠2
∴∠BED=∠B+∠D (等量代換).
⑵如圖,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整.
解:因為EF∥AD(已知)
所以∠2=∠3.( )
又因為∠1=∠2,所以∠1=∠3.(等量代換)
所以AB∥ ( )
所以∠BAC+ =180°( ).
又因為∠BAC=70°,所以∠AGD=110°.
圖⑴ 圖⑵
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“一帶一路”是對古絲綢之路的傳承和提升,讓中國和世界的聯(lián)系更緊密,電氣設備是“一帶一路”沿線國家受青睞的商品。某企業(yè)計劃生產(chǎn)甲、乙兩種電氣設備出口,甲種設備售價50千元/件,乙種設備售價30千元/件,生產(chǎn)這兩種設備需要A、B兩種原料,生產(chǎn)甲設備需要A種原料4噸/件,B種原料2噸/件,生產(chǎn)乙設備需要A種原料3噸/件,B種原料1噸/件,已知A種原料有120噸,B種原料有50噸.
(1)如何安排生產(chǎn),才能恰好使A、B兩種原料全部用完?此時總產(chǎn)值是多少千元?
(2)若使甲種設備售價上漲10%,而乙種設備售價下降10%,并且要求甲種設備比乙種設備多生產(chǎn)25件,問如何安排甲、乙兩種設備的生產(chǎn),使銷售總產(chǎn)值能達到1375千元,此時A、B兩種原料還剩下多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將一塊腰長為 的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標軸上,直角頂點C的坐標為(﹣1,0),點B在拋物線y=ax2+ax﹣2上.
(1)點A的坐標為 , 點B的坐標為;
(2)拋物線的解析式為;
(3)設(2)中拋物線的頂點為D,求△DBC的面積;
(4)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DE∥BF,∠1與∠2互補.
(1)試說明:FG∥AB;
(2)若∠CFG=60°,∠2=150°,則DE與AC垂直嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C、D兩點在⊙O上,若∠C=45°,
(1)求∠ABD的度數(shù).
(2)若∠CDB=30°,BC=3,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先化簡,再求值:
(1)(9x3y-12xy3+3xy2)÷(-3xy)-(2y+x)(2y-x),其中x=1,y=-2;
(2)(m-n)(m+n)+(m+n)2-2m2,其中m、n滿足方程組
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3,已知A(1,5) 、A1(2,5) 、A2(4,5) 、A3(8,5) 、B(2,0) 、B1(4,0) 、B2(8,0) 、B3(16,0):若按此規(guī)律,將△OAB進行n次變換,得到△OAnBn。推測An的坐標是___________,Bn的坐標是___________。( )
A. (2n,5)(2n+1,0) B. (2n-1,5)(2n+1,0) C. (2n,5)(2n,0) D. (2n+1,5)(2n+1,0)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com