【題目】在矩形ABCD中,AD>AB,點(diǎn)PCD邊上的任意一點(diǎn)(不含C,D兩端點(diǎn)),過點(diǎn)PPFBC,交對(duì)角線BD于點(diǎn)F.

(1)如圖1,將PDF沿對(duì)角線BD翻折得到QDF,QFAD于點(diǎn)E.求證:DEF是等腰三角形;

(2)如圖2,將PDF繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn)得到P'DF',連接P'C,F(xiàn)'B.設(shè)旋轉(zhuǎn)角為α(0°<α<180°).

①若0°<α<BDC,即DF'在∠BDC的內(nèi)部時(shí),求證:DP'C∽△DF'B.

②如圖3,若點(diǎn)PCD的中點(diǎn),DF'B能否為直角三角形?如果能,試求出此時(shí)tanDBF'的值,如果不能,請(qǐng)說(shuō)明理由.

【答案】(1)證明見解析;(2)①證明見解析;② .

【解析】1)根據(jù)翻折的性質(zhì)以及平行線的性質(zhì)可知∠DFQ=ADF,所以DEF是等腰三角形;

(2)①由于PFBC,所以DPF∽△DCB,從而易證DP′F′∽△DCB;

②由于DF'B是直角三角形,但不知道哪個(gè)的角是直角,故需要對(duì)該三角形的內(nèi)角進(jìn)行分類討論.

1)由翻折可知:∠DFP=DFQ,

PFBC,

∴∠DFP=ADF,

∴∠DFQ=ADF,

∴△DEF是等腰三角形;

(2)①若0°<α<BDC,即DF'在∠BDC的內(nèi)部時(shí),

∵∠P′DF′=PDF,

∴∠P′DF′﹣F′DC=PDF﹣F′DC,

∴∠P′DC=F′DB,

由旋轉(zhuǎn)的性質(zhì)可知:DP′F′≌△DPF,

PFBC,

∴△DPF∽△DCB,

∴△DP′F′∽△DCB

,

∴△DP'C∽△DF'B;

②當(dāng)∠F′DB=90°時(shí),如圖所示,

DF′=DF=BD,

tanDBF′=;

當(dāng)∠DBF′=90°,此時(shí)DF′是斜邊,即DF′>DB,不符合題意

當(dāng)∠DF′B=90°時(shí),如圖所示,

DF′=DF=BD,

∴∠DBF′=30°,

tanDBF′=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把邊長(zhǎng)為1的正方形ABCD繞頂點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°到正方形AB′C′D′,則它們的公共部分的面積等于(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等腰RtABC中,∠BAC90°,ABAC,點(diǎn)PAC上一點(diǎn),MBC上一點(diǎn).

1)若AMBP于點(diǎn)E

如圖1,BP為△ABC的角平分線,求證:PAPM;

如圖2,BP為△ABC的中線,求證:BPAM+MP

2)如圖3,若點(diǎn)NAB上,ANCP,AMPN,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】614日是世界獻(xiàn)血日,某市采取自愿報(bào)名的方式組織市民義務(wù)獻(xiàn)血.獻(xiàn)血時(shí)要對(duì)獻(xiàn)血者的血型進(jìn)行檢測(cè),檢測(cè)結(jié)果有“A”、“B”、“AB”、“O”4種類型.在獻(xiàn)血者人群中,隨機(jī)抽取了部分獻(xiàn)血者的血型結(jié)果進(jìn)行統(tǒng)計(jì),并根據(jù)這個(gè)統(tǒng)計(jì)結(jié)果制作了兩幅不完整的圖表:

血型

A

B

AB

O

人數(shù)

   

10

5

   

(1)這次隨機(jī)抽取的獻(xiàn)血者人數(shù)為   人,m=   ;

(2)補(bǔ)全上表中的數(shù)據(jù);

(3)若這次活動(dòng)中該市有3000人義務(wù)獻(xiàn)血,請(qǐng)你根據(jù)抽樣結(jié)果回答:

從獻(xiàn)血者人群中任抽取一人,其血型是A型的概率是多少?并估計(jì)這3000人中大約有多少人是A型血?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ACB和△DCE都是等腰直角三角形,∠ACB=DCE=90°,連接AEBD交于點(diǎn)O,AEDC交于點(diǎn)M,BDAC交于點(diǎn)N

(1)如圖1,猜想AEBD的數(shù)量關(guān)系與位置關(guān)系,并加以證明.

(2)如圖2,若AC=DC,在不添加任何輔助線的情況下,請(qǐng)直接寫出2中四對(duì)全等的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EAB的中點(diǎn),連接DE、CE.

(1)求證:ADE≌△BCE;

(2)若AB=6,AD=4,求CDE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某市郊外景區(qū)內(nèi)一條筆直的公路l經(jīng)過A、B兩個(gè)景點(diǎn),景區(qū)管委會(huì)又開發(fā)了風(fēng)景優(yōu)美的景點(diǎn)C.經(jīng)測(cè)量,C位于A的北偏東60°的方向上,C位于B的北偏東30°的方向上,且AB=10km.

(1)求景點(diǎn)BC的距離;

(2)為了方便游客到景點(diǎn)C游玩,景區(qū)管委會(huì)準(zhǔn)備由景點(diǎn)C向公路l修一條距離最短的公路,不考慮其他因素,求出這條最短公路的長(zhǎng).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

1)在圖中的點(diǎn)上標(biāo)出相應(yīng)字母A、B、C,并求出ABC的面積;

2)在圖中作出ABC關(guān)于y軸的對(duì)稱圖形A1B1C1;

3)寫出點(diǎn)A1,B1C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進(jìn)行了抽樣調(diào)查.該部門隨機(jī)抽取了30名工人某天每人加工零件的個(gè)數(shù),數(shù)據(jù)如下:

20

21

19

16

27

18

31

29

21

22

25

20

19

22

35

33

19

17

18

29

18

35

22

15

18

18

31

31

19

22

整理上面數(shù)據(jù),得到條形統(tǒng)計(jì)圖:

樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:

統(tǒng)計(jì)量

平均數(shù)

眾數(shù)

中位數(shù)

數(shù)值

23

m

21

根據(jù)以上信息,解答下列問題:

(1)上表中眾數(shù)m的值為   ;

(2)為調(diào)動(dòng)工人的積極性,該部門根據(jù)工人每天加工零件的個(gè)數(shù)制定了獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡達(dá)到或超過這個(gè)標(biāo)準(zhǔn)的工人將獲得獎(jiǎng)勵(lì).如果想讓一半左右的工人能獲獎(jiǎng),應(yīng)根據(jù)   來(lái)確定獎(jiǎng)勵(lì)標(biāo)準(zhǔn)比較合適.(填平均數(shù)”、“眾數(shù)中位數(shù)”)

(3)該部門規(guī)定:每天加工零件的個(gè)數(shù)達(dá)到或超過25個(gè)的工人為生產(chǎn)能手.若該部門有300名工人,試估計(jì)該部門生產(chǎn)能手的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案