如圖,以AB為直徑作半圓與直角梯形ABED另一腰DE相切于C點,再分別以AC、BC、
AD、CD、CE、BE為直徑作半圓.若AC=3,BC=4,則圖中陰影部分的面積和為   
【答案】分析:先取AB的中點O,連接OC,由勾股定理求出AB的長,再根據(jù)切線的性質(zhì)判斷出OC是梯形ABED的中位線,求出OC的長,根據(jù)直角梯形的性質(zhì)及勾股定理求出CE的長,進而求出梯形的高,再根據(jù)勾股定理及圓的面積公式得出S陰影=S梯形ABED-S△ABC,再把相應的數(shù)值代入進行計算即可.
解答:解:取AB的中點O,連接OC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∵AC=3,BC=4,
∴AB===5,
∵DE是⊙O的切線,
∴OC⊥DE,
∵梯形ABED是直角梯形,
∴∠ADC=∠BEC=90°,
∴OC是梯形ABED的中位線,
∴CD=CE,=OC,
∴OA=OC==,
∵梯形ABED是直角梯形,
∴∠ADC=∠BEC=90°,
∴AC2-AD2=BC2-BE2,即32-(2OC-BE)2=42-BE2,即32-(5-BE)2=42-BE2,解得BE=3.2,
∴CD=CE===,
∴DE=2CE=2×=,
∵△ACD是直角三角形,
∴AC2=AD2+CD2,
∴(2=(2+(2
即以AC為半徑的圓的半圓的面積等于以CD為半徑的半圓與以AD為半徑的半圓面積的和,
∴以CD為半徑的半圓陰影部分與以AD為半徑的半圓陰影部分面積的和等于Rt△ACD的面積,
同理可得,以BE為半徑的半圓陰影部分與以CE為半徑的半圓陰影部分面積的和等于Rt△CBE的面積,
∴S陰影=S梯形ABED-S△ABC=-AC×BC=OC×DE-AC×BC=2.5×-×3×4=6.
故答案為:6.
點評:本題考查的是切線的性質(zhì)、勾股定理及直角梯形的性質(zhì),解答此題的關鍵是作出輔助線,構造出梯形的中位線,再根據(jù)中位線的性質(zhì)進行解答.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:拋物線y=ax2+bx+c(a≠0),頂點C(1,-4),與x軸交于A、B兩點,A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點D,與拋物線的對稱軸交于點E,依次連接A、D、B、E,點Q為線段AB上一個動點(Q與A、B兩點不重合),過點Q作QF⊥AE于F,QG⊥DB于G,請判斷
QF
BE
+
QG
AD
是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點H是線段EQ上一點,過點H作MN⊥EQ,MN分別與邊AE、BE相交于M、N,(M與A、E不重合,N與E、B不重合),請判斷
QA
QB
=
EM
EN
是否成立?若成立,請給出證明;若不成立,精英家教網(wǎng)請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:拋物線y=ax2+bx+c(a≠0),頂點C(1,-3),與x軸交于A,B兩點,A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點D,與拋物線對稱軸交于點E,依次連接A,D,B,E,點P為線段AB上一個動點(P與A,B兩點不重合),過點P作PM⊥AE于M,PN⊥DB于N,請判斷
PM
BE
+
PN
AD
是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點S是線段EP上一點,過點S作FG⊥EP,F(xiàn)G分別與邊AE,BE相交于點F,G(F與A,E不重合,G與E,B不重合),請判斷
PA
PB
=
EF
EG
是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,以AB為直徑作半圓與直角梯形ABED另一腰DE相切于C點,再分別以AC、BC、
AD、CD、CE、BE為直徑作半圓.若AC=3,BC=4,則圖中陰影部分的面積和為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:拋物線y=ax2+bx+c(a≠0),頂點C(1,-3),與x軸交于A,B兩點,A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點D,與拋物線對稱軸交于點E,依次連接A,D,B,E,點P為線段AB上一個動點(P與A,B兩點不重合),過點P作PM⊥AE于M,PN⊥DB于N,請判斷數(shù)學公式是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點S是線段EP上一點,過點S作FG⊥EP,F(xiàn)G分別與邊AE,BE相交于點F,G(F與A,E不重合,G與E,B不重合),請判斷數(shù)學公式是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年山東省濟南市中考數(shù)學試卷(解析版) 題型:解答題

(2008•濟南)已知:拋物線y=ax2+bx+c(a≠0),頂點C(1,-3),與x軸交于A,B兩點,A(-1,0).
(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點D,與拋物線對稱軸交于點E,依次連接A,D,B,E,點P為線段AB上一個動點(P與A,B兩點不重合),過點P作PM⊥AE于M,PN⊥DB于N,請判斷是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點S是線段EP上一點,過點S作FG⊥EP,F(xiàn)G分別與邊AE,BE相交于點F,G(F與A,E不重合,G與E,B不重合),請判斷是否成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案