【題目】定義:兩邊的平方和與這兩邊乘積的差等于第三邊平方的三角形叫做“和諧三角形”.如圖1在中,若,則是“和諧三角形”.
(1)等邊三角形一定是“和諧三角形”,是______命題(填“真”或“假”).
(2)若中,,,,,且,若是“和諧三角形”,求.
(3)如圖2,在等邊三角形的邊,上各取一點(diǎn),,且,,相交于點(diǎn),是的高,若是“和諧三角形”,且.
①求證:.
②連結(jié),若,那么線段,,能否組成一個(gè)“和諧三角形”?若能,請(qǐng)給出證明:若不能,請(qǐng)說明理由.
【答案】(1)真;(2).(3)能,證明見解析
【解析】
(1)利用“和諧三角形”的定義驗(yàn)證即可;
(2)若是“和諧三角形”,分,,三種情況,分別進(jìn)行討論即可;
(3)①先利用是“和諧三角形”和第(2)問的結(jié)論得出,然后再利用等邊三角形的性質(zhì)證明,則結(jié)論可證;
②先證明,得出,設(shè)出,,然后分別表示出,然后用“和諧三角形”定義驗(yàn)證即可.
(1)設(shè)等邊三角形三邊分別為a,b,c
∵三角形為等邊三角形
∴a=b=c
∵
∴等邊三角形是“和諧三角形”
故答案為“真”
(2)∵,,,,
∴.
①若,則.(舍去)
②若,則,
∴,得.
由勾股定理得
∴.
③若,則,
∴,得.
由勾股定理得
∴
∵
∴(舍去)
綜上可知,是“和諧三角形”時(shí).
(3)①∵在等邊三角形中,
∴,.
又∵是的高,是“和諧三角形”,
∴.
∴.
∴.
又∵.
∴.
∴.
∴.
②
∵,
∴.
∴
∴.
由,知,
設(shè),,則.
∴
,
∴,
∴,
∴線段,,能組成一個(gè)和諧三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠B=∠C,BD=CE,AB=DC,
①求證:△ADE為等腰三角形.
②若∠B=60°,求證:△ADE為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班將買一些乒乓球和乒乓球拍,現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍.乒乓球拍每副定價(jià)元,乒乓球每盒定價(jià)元,經(jīng)洽談后,甲店每買一-副球拍贈(zèng)一盒乒乓球,乙店全部按定價(jià)的折優(yōu)惠.該班需買球拍副,乒乓球若干盒(不小于盒).
(1)當(dāng)購買乒乓球多少盒時(shí),在兩店購買付款一樣?
(2)如果給你元,讓你選擇- -家商店去辦這件事,你打算去哪家商店購買?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點(diǎn)是邊上一點(diǎn),連接,把沿折疊,使點(diǎn)落在點(diǎn)處,當(dāng)為直角三角形時(shí),的長為( )
A. 3B. C. 2或3D. 3或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(背景知識(shí))
數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為、,則、兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為.
(問題情境)
如圖,數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為8,點(diǎn)從點(diǎn)出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒().
(綜合運(yùn)用)
(1)填空:
①、兩點(diǎn)之間的距離________,線段的中點(diǎn)表示的數(shù)為__________.
②用含的代數(shù)式表示:秒后,點(diǎn)表示的數(shù)為____________;點(diǎn)表示的數(shù)為___________.
③當(dāng)_________時(shí),、兩點(diǎn)相遇,相遇點(diǎn)所表示的數(shù)為__________.
(2)當(dāng)為何值時(shí),.
(3)若點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn),點(diǎn)在運(yùn)動(dòng)過程中,線段的長度是否發(fā)生變化?若變化,請(qǐng)說明理由;若不變,請(qǐng)求出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,長方形的三個(gè)頂點(diǎn)的坐標(biāo)為,,,且軸,點(diǎn)是長方形內(nèi)一點(diǎn)(不含邊界).
(1)求,的取值范圍.
(2)若將點(diǎn)向左移動(dòng)8個(gè)單位,再向上移動(dòng)2個(gè)單位到點(diǎn),若點(diǎn)恰好與點(diǎn)關(guān)于軸對(duì)稱,求,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時(shí)間x(單位:h)變化的圖象
如圖所示,根據(jù)圖中提供的信息,有下列說法:
①兩人相遇前,甲的速度小于乙的速度; ②出發(fā)后1小時(shí),兩人行程均為10km;
③出發(fā)后1.5小時(shí),甲的行程比乙多3km; ④甲比乙先到達(dá)終點(diǎn).
其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年2月,市城區(qū)公交車施行全程免費(fèi)乘坐政策,標(biāo)志著我市公共交通建設(shè)邁進(jìn)了一個(gè)新的時(shí)代.下圖為某一條東西方向直線上的公交線路,東起職教園區(qū)站,西至富士康站,途中共設(shè)個(gè)上下車站點(diǎn),如圖所示:
某天,小王從電業(yè)局站出發(fā),始終在該線路的公交站點(diǎn)做志愿者服務(wù),到站下車時(shí),本次志愿者服務(wù)活動(dòng)結(jié)束,如果規(guī)定向東為正,向西為負(fù),當(dāng)天的乘車站數(shù)按先后順序依次記錄如下(單位:站): ;
請(qǐng)通過計(jì)算說明站是哪一站?
若相鄰兩站之間的平均距離為千米,求這次小王志愿服務(wù)期間乘坐公交車行進(jìn)的總路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB=6cm,點(diǎn)D是線段AB上一動(dòng)點(diǎn),將線段CD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)50°至CD′,連接BD′.設(shè)AD為xcm,BD′為ycm.
小夏根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小夏的探究過程,請(qǐng)補(bǔ)充完整.
(1)通過取點(diǎn)、畫圖、測量,得到了與的幾組值,如下表:
1 | 2 | 3 | 3.5 | 4 | 5 | 6 | ||
3.5 | 1.5 | 0.5 | 0.2 | 0.6 | 1.5 | 2.5 |
(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)BD=BD'時(shí),線段AD的長度約為_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com