【題目】某廣場上一個形狀是平行四邊形的花壇,分別種有紅、黃、藍、白、橙、紫6種顏色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列說法中錯誤的是( 。
A.紅花,白花種植面積一定相等
B.紅花,藍花種植面積一定相等
C.藍花,黃花種植面積一定相等
D.紫花,橙花種植面積一定相等
【答案】B
【解析】
由題意得出四邊形ABCD、四邊形DEOH、四邊形BGOF、四邊形AGOE、四邊形CHOF是平行四邊形,得出△ABD的面積=△CBD的面積,△DOE的面積=△DOH的面積,△BOG的面積=△BOF的面積,得出四邊形AGOE的面積=四邊形CHOF的面積,即可得出結論.
解:如圖所示:
∵AB∥EF∥DC,BC∥GH∥AD,
∴四邊形ABCD、四邊形DEOH、四邊形BGOF、四邊形AGOE、四邊形CHOF是平行四邊形,
∴△ABD的面積=△CBD的面積,△DOE的面積=△DOH的面積,△BOG的面積=△BOF的面積,
∴四邊形AGOE的面積=四邊形CHOF的面積,
∴A、C、D正確,B不正確;
故選:B.
科目:初中數學 來源: 題型:
【題目】如圖,有一塊直角三角形紙片,AC=6,BC=8,現將△ABC沿直線AD折疊,使AC落在斜邊AB上,且C與點E重合,則AD的長為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,點D為AB的中點.若點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.
(1)若點Q的運動速度與點P的運動速度相等,經過1秒后,△BPD與△CQP是否全等,請說明理由;
(2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】①已知:△ABC中,BC=m,∠A=60°.問滿足此條件的三角形有多少個?它們的最大面積存在嗎?若存在求出最大面積,并回答此時三角形的形狀;若不存在,請說明理由.
②有一個正方形的養(yǎng)魚塘,四個角各有一棵大樹.生產隊設想把魚塘擴大,使它成為一個面積最大的正方形,而又不把樹挖掉,這一設想能否實現?若能,請你設計畫出圖形,并證明此時面積最大.若不能,請說明理由.
③上問題推廣,有一個正五邊形的養(yǎng)魚塘,五個角各有一棵樹,要擴大使它成為面積最大的正五邊形,而又不把樹挖掉,可以嗎?畫圖說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據某網站調查,2014年網民們最關注的熱點話題分別有:消費、教育、環(huán)保、反腐及其他共五類.根據調查的部分相關數據,繪制的統(tǒng)計圖表如下:
根據所給信息解答下列問題:
(1)請補全條形統(tǒng)計圖并在圖中標明相應數據;
(2)若菏澤市約有880萬人口,請你估計最關注環(huán)保問題的人數約為多少萬人?
(3)在這次調查中,某單位共有甲、乙、丙、丁四人最關注教育問題,現準備從這四人中隨機抽取兩人進行座談,試用列表或樹形圖的方法求抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,∠ACD=3∠BCD,E是斜邊AB的中點,則∠ECD的度數為__________度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】全面兩孩政策實施后,甲,乙兩個家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:
(1)甲家庭已有一個男孩,準備再生一個孩子,則第二個孩子是女孩的概率是 ;
(2)乙家庭沒有孩子,準備生兩個孩子,求至少有一個孩子是女孩的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC為等腰三角形,AB=AC,AB>BC,∠1=∠2≠90°,∠1+∠BAC=180°,點A、F、E、D在一條直線上,點D在BC邊上,CD=2BD.若△ABC的面積為40,求△ABE與△CDF的面積之和________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,函數(x<0)與y=ax+b的圖象交于點A(﹣1,n)和點B(﹣2,1).
(1)求k,a,b的值;
(2)直線x=m與(x<0)的圖象交于點P,與y=﹣x+1的圖象交于點Q,當∠PAQ>90°時,直接寫出m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com