【題目】設m是不小于﹣1的實數(shù),關于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個不相等的實數(shù)根x1、x2

(1)若x12+x22=6,求m值;

(2)令T=,求T的取值范圍.

【答案】(1)m=;(2)0<T≤4且T≠2.

【解析】

由方程方程由兩個不相等的實數(shù)根求得﹣1≤m<1,根據(jù)根與系數(shù)的關系可得x1+x2=4﹣2m,x1x2=m2﹣3m+3;(1)把x12+x22=6化為(x1+x22﹣2x1x2=6,代入解方程求得m的值,根據(jù)﹣1≤m<1對方程的解進行取舍;(2)把T化簡為2﹣2m,結合﹣1≤m<1m≠0即可求T得取值范圍.

∵方程由兩個不相等的實數(shù)根,

所以=[2(m﹣2)]2﹣4(m2﹣3m+3)

=﹣4m+4>0,

所以m<1,又∵m是不小于﹣1的實數(shù),

﹣1≤m<1

x1+x2=﹣2(m﹣2)=4﹣2m,x1x2=m2﹣3m+3;

(1)x12+x22=6,

(x1+x22﹣2x1x2=6,

即(4﹣2m)2﹣2(m2﹣3m+3)=6

整理,得m2﹣5m+2=0

解得m=

﹣1≤m<1

所以m=

(2)T=+

=

=

=

=

=2﹣2m.

﹣1≤m<1m≠0

所以0<2﹣2m≤4m≠0

0<T≤4T≠2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D在線段BC上,∠EDB=∠C,BE⊥DE,垂足為E,DE與AB相交于點F.試探究線段BE與DF的數(shù)量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=AC,BD垂直AC于點D,若,則頂角∠BAC=_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊長和寬分別為60厘米和40厘米的長方形鐵皮,要在它的四角截去四個相等的小正方形,折成一個無蓋的長方體水槽,使它的底面積為800平方厘米.求截去正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次構造勾股數(shù)的探究性學習中,老師給出了下表:

其中m、n為正整數(shù),且m>n.

(1)觀察表格,當m=2,n=1時,此時對應的a、bc的值能否為直角三角形三邊的長?說明你的理由.

(2)探究a,b,cmn之間的關系并用含m、n的代數(shù)式表示:a=___,b=___c=___.

(3)a,b,c為邊長的三角形是否一定為直角三角形?如果是,請說明理由;如果不是,請舉出反例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+5與雙曲線x0)相交于AB兩點,與x軸相交于C點,△BOC的面積是.若將直線y=﹣x+5向下平移1個單位,則所得直線與雙曲線x0)的交點有( )

A. 0B. 1C. 2D. 0個,或1個,或2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】墊球是排球隊常規(guī)訓練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績,測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.

運動員甲測試成績表

測試序號

1

2

3

4

5

6

7

8

9

10

成績(分)

7

6

8

7

7

5

8

7

8

7

(1)小明將三人的成績整理后制作了下面的表格:

平均數(shù)

中位數(shù)

眾數(shù)

方差

7

b

7

0.8

7

7

d

0.4

a

c

e

0.81

則表中a=   ,b=   ,c=  ,d=   ,e=   

(2)若在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認為選誰更合適?請作出簡要分析.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,則下列說法中正確的是(

A. B.

C. 時,的增大而減小 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一款名為超級瑪麗的游戲中,瑪麗到達一個高為10米的高臺A,利用旗桿頂部的繩索,劃過90°到達與高臺A水平距離為17米,高為3米的矮臺B,求旗桿的高度OM和瑪麗在蕩繩索過程中離地面的最低點的高度MN.

查看答案和解析>>

同步練習冊答案