如圖,直線與軸相交于點,與軸相交于點,點從點出發(fā),以每秒個單位長度的速度沿直線向點移動。同時,將直線以每秒個單位長度的速度向上平移,交于點,交于點,設運動時間為秒。
⑴證明:在運動過程中,四邊形總是平行四邊形;
⑵當取何值時,四邊形為菱形?請指出此時以點為圓心、長為半徑的圓與直線的位置關系并說明理由。
解:⑴∵直線與軸相交于點,與軸相交于點
∴直線的解析式為,即
∵將直線以每秒個單位長度的速度向上平移秒得到直線
∴,∴,∴直線的解析式為
∵在直線中,點在軸上,∴令,則,∴,
∴在中,
∵點從點出發(fā),以每秒個單位長度的速度沿直線向點移動秒
∴,∴,又∵,∴,
∵,,∴在運動過程中,四邊形總是平行四邊形;
⑵欲使四邊形為菱形,只需在中滿足條件,即,解得
∴當時,四邊形為菱形;
此時以點為圓心、長為半徑的圓與直線相切,理由如下:
∵,∴,∴
∵,,∴,,∴在中,
過點作于點,則
∵在和中,且,∴∽
∴,即,∴,∴點到直線的距離等于的半徑
∴以點為圓心、長為半徑的圓與直線相切。
另解:(在證明與直線相切時,也可利用等積法求得點到直線的距離。)
設點到直線的距離為,則,連結,
∵且、
∴,解得,∴點到直線的距離與的半徑相等,即
∴以點為圓心、長為半徑的與直線相切。
再解:(巧用“菱形對角線的性質”和“角平分線性質定理”)
連結,則是菱形的對角線,∴平分
∵,∴是點到直線的距離,
∴點到直線的距離=點到直線的距離
∴以點為圓心、長為半徑的圓與直線相切。
科目:初中數學 來源: 題型:
閱讀理解:如圖3,在平面內選一定點,引一條有方向的射線,再選定一個單位長度,那么平面上任一點M的位置可由的度數與的長度m確定,有序數對(,m)稱為點的“極坐標”,這樣建立的坐標系稱為“極坐標系”.
應用:在圖4的極坐標系下,如果正六邊形的邊長為2,有一邊OA在射線上,則正六邊形的頂點C的極坐標應記為
A.(60°,4) B.(45°,4) C.(60°,2) D.(50°,2)
圖3 圖4
查看答案和解析>>
科目:初中數學 來源: 題型:
在“黃袍山國家油茶產業(yè)示范園”建設中,某農戶計劃購買甲、乙兩種油茶樹苗共1000株.已知乙種樹苗比甲種樹苗每株貴3元,且用100元錢購買甲種樹苗的株數與用160元錢購買乙種樹苗的株數剛好相同.
(1)求甲、乙兩種油茶樹苗每株的價格;
(2)如果購買兩種樹苗共用5600元,那么甲、乙兩種樹苗各買了多少株?
(3)調查統計得,甲、乙兩種樹苗的成活率分別為90%,95%.要使這批樹苗的成活率不低于92%,且使購買樹苗的費用最低,應如何選購樹苗?最低費用是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
為了了解我市的空氣質量情況,某環(huán)保興趣小組從環(huán)境監(jiān)測網隨機抽取了我市若干天的空氣質量情況作為樣本進行統計,繪制了如圖所示的條形統計圖和扇形統計圖(部分信息未給出)。
我市若干天空氣質量情況條形統計圖 我市若干天空氣質量情況扇形統計圖
請你根據圖中提供的信息,解答下列問題:
⑴請補全條形統計圖;
⑵求扇形統計圖中表示“優(yōu)”的扇形的圓心角度數;
⑶請估計我市這一年(天)達到“優(yōu)”和“良”的總天數。
查看答案和解析>>
科目:初中數學 來源: 題型:
如果將拋物線y=x2向右平移1個單位,那么所得的拋物線的表達式是().
(A) y=x2-1; (B) y=x2+1; (C) y=(x-1)2; (D) y=(x+1)2.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com