【題目】如圖,直角△ABC中,∠BAC=90°,D在BC上,連接AD,作BF⊥AD分別交AD于E,AC于F.
(1)如圖1,若BD=BA,求證:△ABE≌△DBE;
(2)如圖2,若BD=4DC,取AB的中點G,連接CG交AD于M,求證:①GM=2MC;②AG2=AFAC.
【答案】(1)證明見解析;(2)①證明見解析;②證明見解析.
【解析】
試題分析:(1)根據(jù)全等三角形的判定定理即可得到結(jié)論;
(2)①過G作GH∥AD交BC于H,由AG=BG,得到BH=DH,根據(jù)已知條件設DC=1,BD=4,得到BH=DH=2,根據(jù)平行線分線段成比例定理得到,求得GM=2MC;
②過C作CN⊥AD交AD的延長線于N,則CN∥AG,根據(jù)相似三角形的性質(zhì)得到,由①知GM=2MC,得到2NC=AG,根據(jù)相似三角形的性質(zhì)得到,等量代換得到,于是得到結(jié)論.
試題解析:(1)在Rt△ABE和Rt△DBE中,∵BA=BD,BE=BE,∴△ABE≌△DBE;
(2)①過G作GH∥AD交BC于H,∵AG=BG,∴BH=DH,∵BD=4DC,設DC=1,BD=4,∴BH=DH=2,∵GH∥AD,∴,∴GM=2MC;
②過C作CN⊥AC交AD的延長線于N,則CN∥AG,∴△AGM∽△NCM,∴,由①知GM=2MC,∴2NC=AG,∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°﹣∠BAE,∴△ACN∽△BAF,∴,∵AB=AG,∴,∴2CNAG=AFAC,∴AG2=AFAC.
科目:初中數(shù)學 來源: 題型:
【題目】為了測量被池塘隔開的A,B兩點之間的距離,根據(jù)實際情況,作出如圖圖形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同學分別測量出以下四組數(shù)據(jù):①BC,∠ACB; ②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根據(jù)所測數(shù)據(jù),求出A,B間距離的有【 】
A.1組 B.2組 C.3組 D.4組
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,等腰△ABC中,AB=AC,∠BAC=120°,P為直線BC上一點,BP=AB,則∠APB的度數(shù)為___________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在水果銷售旺季,某水果店購進一優(yōu)質(zhì)水果,進價為 20 元/千克,售價不低于 20 元/千克,且不超過 32 元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量 y(千克)與該天的售價 x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.
銷售量 y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價 x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為 23.5 元/千克,求當天該水果的銷售量.
(2)如果某天銷售這種水果獲利 150 元,那么該天水果的售價為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片ABCD中,AB=6,BC=9,沿EF折疊,使點B落在DC邊上點P處,點A落在Q處,AD與PQ相交于點H.
(1)如圖1,當點P為邊DC的中點時,求EC的長;
(2)如圖2,當∠CPE=30°,求EC、AF的長;(3)如圖2,在(2)條件下,求四邊形EPHF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖7-①,圖7-②,圖7-③,圖7-④,…,是用圍棋棋子按照某種規(guī)律擺成的一行“廣”字,按照這種規(guī)律,第5個“廣”字中的棋子個數(shù)是________,第個“廣”字中的棋子個數(shù)是________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中AB=AC.
(1)作圖:在AC上有一點D,延長BD,并在BD的延長線上取點E,使AE=AB,連AE,作∠EAC的平分線AF,AF交DE于點F(用尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)在(1)的條件下,連接CF,求證:∠BAC=∠BFC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,點D是AB的中點,連接CD,過B作BE⊥CD交CD的延長線于點E,連接AE,過A作AF⊥AE交CD于點F.
(1)求證:AE=AF;
(2)求證:CD=2BE+DE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從相距420km的A、B兩地相向而行,乙車比甲車先出發(fā)1小時,兩車分別以各自的速度勻速行駛,途經(jīng)C地(A、B、C三地在同一條直線上).甲車到達C地后因有事立即按原路原速返回A地,乙車從B地直達A地,甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車行駛所用的時間x(小時)的關(guān)系如圖所示,結(jié)合圖象信息回答下列問題:
(1)甲車的速度是 千米/時,乙車的速度是 千米/時;
(2)求甲車距它出發(fā)地的路程y(千米)與它行駛所用的時間x(小時)之間的函數(shù)關(guān)系式;
(3)甲車出發(fā)多長時間后兩車相距90千米?請你直接寫出答案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com