【題目】如圖,直線與坐標軸分別交于點,與直線交于點是線段上的動點,連接,若是等腰三角形,則的長為___________.
【答案】2或或4
【解析】
先求出直線與直線交點C的坐標,若使是等腰三角形,分三種情況討論,即OQ=CQ或OC=OQ或OC=CQ,在直角三角形中利用勾股定理,根據(jù)等腰三角形的性質即可求出OQ.
①如圖,當OQ=CQ時,過點C作CE⊥OA于點E,
直線與直線交于點C,
得x=2,
y=x=2
∴C(2,2)
設OQ=CQ=x,QE=2-x
在Rt△CEQ中
解得x=2
②當OC=OQ時,過點C作CE⊥OA于點E,C(2,2)
在Rt△CEO中,
OC=
③當OC=CQ時, 過點C作CE⊥OA于點E
∵OC=CQ
∴OE=EQ=2
∴OQ=2OE=4
綜上所示,若是等腰三角形,OQ的長為2或或4
故答案為:2或或4
科目:初中數(shù)學 來源: 題型:
【題目】如下圖,搭一個正方形需要4根火柴棒,搭2個正方形需要7根火柴棒,搭3個正方形需要10根火柴棒.
……
(1)若搭5個這樣的正方形,這需要 根火柴棒;
(2)若搭n個這樣的正方形,這需要 根火柴棒;
(3)若現(xiàn)在有2018根火柴棒,要搭700個這樣的正方形,至少還需要火柴多少根?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標為(﹣1,0),點C(0,5),另拋物線經(jīng)過點(1,8),M為它的頂點.
(1)求拋物線的解析式;
(2)求△MCB的面積S△MCB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A,B兩點,CD切⊙O于點E,AD與CD相交于D,BC與CD相交于C,連結OD、OE、OC,對于下列結論:
①AD+BC=CD;②∠DOC=90°;③S梯形ABCD=CDOA;④.
其中結論正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:只有一組對角是直角的四邊形叫做損矩形,連結它的兩個非直角頂點的線段叫做這個損矩形的直徑.
【1】如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段 .
【1】在線段AC上確定一點P,使損矩形的四個頂點都在以P為圓心的同一圓上(即損矩形的四個頂點在同一個圓上),請作出這個圓,并說明你的理由. 友情提醒:“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡.
【1】如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連結BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由. 若此時AB=3,BD=,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有理數(shù)a、b在數(shù)軸上的對應點如圖所示
(1) 填空:(填“<”、“>”或“=”)
a_________0;b_________0;|a+b|_________|a|+|b|
(2) 用“<”將a、b、-b、、0連接起來
(3) 化簡:|a+b|-|b+1|-|a-1|=______________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,把△ABC繞AC邊的中點M旋轉后得△DEF,若直角頂點F恰好落在AB邊上,且DE邊交AB邊于點G,若AC=4,BC=3,則AG的長為( )
A.B.C.D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知拋物線經(jīng)過點A(0,3),B(3,0),C(4,3).
(1)求拋物線的函數(shù)表達式;
(2)求拋物線的頂點坐標和對稱軸;
(3)把拋物線向上平移,使得頂點落在x軸上,直接寫出兩條拋物線、對稱軸和y軸圍成的圖形的面積S(圖②中陰影部分).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com