如圖,在四邊形ABCD中,AD<BC,AC與BD相交于O,現(xiàn)給出如下三個論斷:
①AB=DC;②∠1=∠2;③AD∥BC.
請你選擇其中兩個論斷為條件,另外一個論斷為結(jié)論,構(gòu)造一個命題.
(1)在構(gòu)成的所有命題中,是真命題的概率P=______;
(2)在構(gòu)成的真命題中,請選擇一個加以證明.

解:(1)在三個論斷:①AB=DC;②∠1=∠2;③AD∥BC;選擇其中兩個論斷為條件,另外一個論斷為結(jié)論;共有3種情況,而真命題有2個;即是真命題的概率P=

(2)選擇真命題一:
證明:∵AD∥BC,AD<BC,AB=DC,
∴四邊形ABCD為等腰梯形.
∴∠ABC=∠DCB.
∵BC=CB,
∴△ABC≌△DCB.
∴∠1=∠2.
選擇真命題二:
證明:∵∠1=∠2,
∴OB=OC.
∵AD∥BC,
∴∠OAD=∠2,∠ODA=∠1.
∴∠OAD=∠ODA.
∴OD=OA.
∵∠AOB=∠DOC,
∴△AOB≌△DOC.
∴AB=CD.
分析:根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):1,符合條件的情況數(shù)目;2全部情況的總數(shù);二者的比值就是其發(fā)生的概率.
點(diǎn)評:用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.證明角相等或邊相等通常證明角或邊所在的三角形全等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊答案