【題目】如果一個(gè)三角形的兩個(gè)內(nèi)角αβ滿足α+2β=90°,那么我們稱這樣的三角形為“非常三角形”.

1)若△ABC是“非常三角形”,∠C90°,∠A=50°,則∠B=

2)如圖,△ABC中,AB=ACD是邊BC上一點(diǎn),以BD為直徑的⊙O經(jīng)過(guò)點(diǎn)A,連結(jié)AD

①求證:△ADC為“非常三角形”.

②若sinB=AB=8,弦AB上是否存在一點(diǎn)P,使得△BDP是“非常三角形”,若存在,請(qǐng)求出線段AP的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2)①證明見(jiàn)解析;②3

【解析】

1)先根據(jù)三角形的內(nèi)角和定理可得,再根據(jù)非常三角形的定義即可得;

2)①先根據(jù)圓周角定理可得,從而可得,再根據(jù)等腰三角形的性質(zhì)可得,然后根據(jù)三角形的外角性質(zhì)、等量代換即可得證;

②先解直角三角形求出,再根據(jù)三角形的外角性質(zhì)求出,據(jù)此分如圖1和如圖2(見(jiàn)解析)兩種情況,然后分別利用相似三角形的判定與性質(zhì)求解即可得.

1

則由非常三角形的定義得:,即

解得

故答案為:;

2)①∵BD是直徑

非常三角形;

②在中,,

設(shè),則

由勾股定理得:,解得

因?yàn)?/span>

所以根據(jù)非常三角形的定義,分以下兩種情況:

情況1:如圖1,若非常三角形

過(guò)點(diǎn)P

由角平分線的性質(zhì)得:

中,

,即

解得

情況2:如圖2,若非常三角形

中,

,即

解得

綜上,線段AP的長(zhǎng)度為3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在中,上一點(diǎn),連接,,則線段的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點(diǎn),與y軸交于點(diǎn),且此拋物線的頂點(diǎn)坐標(biāo)為

求此拋物線的解析式;

設(shè)點(diǎn)D為已知拋物線對(duì)稱軸上的任意一點(diǎn),當(dāng)面積相等時(shí),求點(diǎn)D的坐標(biāo);

點(diǎn)P在線段AM上,當(dāng)PCy軸垂直時(shí),過(guò)點(diǎn)Px軸的垂線,垂足為E,將沿直線CE翻折,使點(diǎn)P的對(duì)應(yīng)點(diǎn)P、E、C處在同一平面內(nèi),請(qǐng)求出點(diǎn)坐標(biāo),并判斷點(diǎn)是否在該拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,,,點(diǎn)軸的正半軸上,點(diǎn)軸正半軸上一動(dòng)點(diǎn),連接,以為邊長(zhǎng),在的右側(cè)作等邊.設(shè)點(diǎn)的橫坐標(biāo)為,點(diǎn)的縱坐標(biāo)為,則的函數(shù)關(guān)系式是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸于點(diǎn),交軸于點(diǎn),且拋物線的對(duì)稱軸經(jīng)過(guò)點(diǎn),過(guò)點(diǎn)的直線交拋物線于另一點(diǎn),點(diǎn)是該拋物線上一點(diǎn),連接,,

1)求直線及拋物線的函數(shù)表達(dá)式;

2)試問(wèn):軸上是否存在某一點(diǎn),使得以點(diǎn),為頂點(diǎn)的相似?若相似,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

3)若點(diǎn)是直線上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)重合),過(guò)交直線于點(diǎn),以為直徑作,則在直線上所截得的線段長(zhǎng)度的最大值等于_______.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形中,,,沿對(duì)角線將矩形分成兩個(gè)直角三角形,如圖1,其中不動(dòng),沿射線的方向以每秒的速度平移,如圖2

1)在平移過(guò)程中,當(dāng)滿足什么條件時(shí),四邊形是菱形?說(shuō)明理由;

2)當(dāng)四邊形是菱形時(shí),平移了多少秒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:的直徑,的延長(zhǎng)線上有一點(diǎn),的切線,切點(diǎn)為,過(guò)點(diǎn),垂足為,連接

1)如圖1,求證:

2)如圖2,上的點(diǎn),連接、,若,

求證:;

3)如圖3,在(2)的條件下,點(diǎn)上,點(diǎn)上,連接相交于點(diǎn),延長(zhǎng)到點(diǎn),連接、,若,,,,求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,二次函數(shù)yx2x+3的圖象交x軸于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于C點(diǎn),連結(jié)AC,過(guò)點(diǎn)CCDACAB于點(diǎn)D

1)求點(diǎn)D的坐標(biāo);

2)如圖2,已知點(diǎn)E是該二次函數(shù)圖象的頂點(diǎn),在線段AO上取一點(diǎn)F,過(guò)點(diǎn)FFHCD,交該二次函數(shù)的圖象于點(diǎn)H(點(diǎn)H在點(diǎn)E的右側(cè)),當(dāng)五邊形FCEHB的面積最大時(shí),求點(diǎn)H的橫坐標(biāo);

3)如圖3,在直線BC上取一點(diǎn)M(不與點(diǎn)B重合),在直線CD的右上方是否存在這樣的點(diǎn)N,使得以CM、N為頂點(diǎn)的三角形與△BCD全等?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c(a0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(3,0),對(duì)稱軸為直線x1.下列結(jié)論正確的是(  )

A.abc0B.b24ac

C.a+b+c0D.當(dāng)y0時(shí),﹣1x3

查看答案和解析>>

同步練習(xí)冊(cè)答案