【題目】已知方程組的解滿足為非正數(shù),為負(fù)數(shù).
(1)求的取值范圍;
(2)化簡:;
(3)在的取值范圍內(nèi),當(dāng)為何整數(shù)時不等式的解集為.
【答案】(1)-2<m≤3;(2)1-2m;(3)-1.
【解析】
(1)先求出方程組的解,根據(jù)x為非正數(shù),y為負(fù)數(shù),組成不等式組,解不等式組,即可解答.
(2)根據(jù)m的取值范圍,絕對值的性質(zhì)化簡,即可解答.
(3)由不等式的性質(zhì)求出m的范圍,結(jié)合(1)中所求范圍可得答案.
(1)解原方程組得:
,
∵x≤0,y<0,
∴ ,
解得-2<m≤3;
(2)|m-3|-|m+2|=3-m-m-2=1-2m;
(3)解不等式2mx+x<2m+1得(2m+1)x<2m+1,
∵x>1,
∴2m+1<0,
∴m<-,
∴-2<m<-,
∴m=-1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點E為AB中點.沿過點E的直線折疊,使點B與點A重合,折痕現(xiàn)交于點F.已知EF=cm, 則BC的長是_______________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形紙片的一角作折疊,使頂點 A 落在 A處, DE 為折痕,將 BEA對折,使得 B落在直線 EA上,得折痕 EG .
(1)求 DEG 的度數(shù);
(2) 若 EA恰好平分 DEB ,求 DEA的度數(shù) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=ax+b(a、b是常數(shù),a≠0)函數(shù)圖象經(jīng)過(﹣1,4),(2,﹣2)兩點,下面說法中:(1)a=2,b=2;(2)函數(shù)圖象經(jīng)過(1,0);(3)不等式ax+b>0的解集是x<1;(4)不等式ax+b<0的解集是x<1;正確的說法有____________________.(請寫出所有正確說法的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a>0)圖象的頂點為D,其圖象與x軸的交點A、B的橫坐標(biāo)分別為﹣1,3.與y軸負(fù)半軸交于點C,在下面五個結(jié)論中:
①2a﹣b=0;②c=﹣3a;③當(dāng)m≠1時,a+b<am2+bm;
④若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=2;
⑤使△ACB為等腰三角形的a值可以有三個.其中正確的結(jié)論是_________.(只填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,G是邊長為8的正方形ABCD的邊BC上的一點,矩形DEFG的邊EF過點A,GD=10.
(1)求FG的長;
(2)直接寫出圖中與△BHG相似的所有三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板按如圖放置,小明得到下列結(jié)論:①如果∠2=30°,則有AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,則有∠2=30°;④如果∠CAD=150°,則∠4=∠C;那么其中正確的結(jié)論有________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90,AC=BC=1,E、F為線段AB上兩動點,且∠ECF=45°,過點E、F分別作BC、AC的垂線相交于點M,垂足分別為H、G.現(xiàn)有以下結(jié)論:①AB=;②當(dāng)點E與點B重合時,MH=;③AF+BE=EF;④MGMH=,其中正確結(jié)論為( )
A. ①②③ B. ①③④ C. ①②④ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com