【題目】閱讀下面的材料:

在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)yk1xb1k1≠0)的圖象為直線l1,一次函數(shù)yk2xb2k2≠0)的圖象為直線l2,若k1k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.

解答下面的問題:

1)求過點(diǎn)P1,4)且與已知直線y=-2x1平行的直線的函數(shù)表達(dá)式,并畫出直線l的圖象;

2)設(shè)直線l分別與y軸、x軸交于點(diǎn)A、B,如果直線ykxt ( t0)與直線l平行且交x軸于點(diǎn)C,求出△ABC的面積S關(guān)于t的函數(shù)表達(dá)式.

【答案】1y—2x6,直線的圖象如圖:

2的面積關(guān)于的函數(shù)表達(dá)式為

【解析】

試題(1)設(shè)直線l的函數(shù)表達(dá)式為yk xb,根據(jù)平行的性質(zhì)可得k—2,再根據(jù)直線l過點(diǎn)(1,4),即可求得直線l的函數(shù)表達(dá)式,最后根據(jù)描點(diǎn)法即可做出直線的圖象;

2)先分別求得直線l分別與y軸、x軸的交點(diǎn)A、B的坐標(biāo),再根據(jù)l∥,可設(shè)直線y—2xt,從而表示出C點(diǎn)的坐標(biāo)為(,0),由t0可判斷C點(diǎn)在x軸的正半軸上,再分C點(diǎn)在B點(diǎn)的左側(cè)與C點(diǎn)在B點(diǎn)的右側(cè)兩種情況結(jié)合三角形的面積公式分析即可.

1)設(shè)直線l的函數(shù)表達(dá)式為yk xb.

直線l與直線y—2x—1平行,∴k—2.

直線l過點(diǎn)(14),∴—2b4∴b6.

直線l的函數(shù)表達(dá)式為y—2x6,直線的圖象如圖:

2直線l分別與y軸、x軸交于點(diǎn)A、B

點(diǎn)A、B的坐標(biāo)分別為(0,6)、(30.

∵l∥,直線y—2xt.

∴C點(diǎn)的坐標(biāo)為(0.

∵t0,

0.

∴C點(diǎn)在x軸的正半軸上.

當(dāng)C點(diǎn)在B點(diǎn)的左側(cè)時(shí),;

當(dāng)C點(diǎn)在B點(diǎn)的右側(cè)時(shí),.

∴△的面積關(guān)于的函數(shù)表達(dá)式為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地下管道,若由甲隊(duì)單獨(dú)鋪設(shè),恰好在規(guī)定時(shí)間內(nèi)完成;若由乙隊(duì)單獨(dú)鋪設(shè),需要超過規(guī)定時(shí)間15天才能完成如果先由甲、乙兩隊(duì)合做10再由乙隊(duì)單獨(dú)鋪設(shè)正好按時(shí)完成.

(1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

(2)已知甲隊(duì)每天的施工費(fèi)用為5000,乙隊(duì)每天的施工費(fèi)用為3000,為了縮短工期以減少對(duì)居民交通的影響,工程指揮部最終決定該工程由甲、乙兩隊(duì)合做來完成,那么該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某出租車駕駛員從公司出發(fā),在南北向的人民路上連續(xù)接送5批客人,行駛路程記錄如下(規(guī)定向南為正,向北為負(fù),單位:km):

①接送完第5批客人后,該駕駛員在公司什么方向,距離公司多少千米?

②若該出租車每千米耗油0.2升,那么在這過程中共耗油多少升?

③若該出租車的計(jì)價(jià)標(biāo)準(zhǔn)為:行駛路程不超過3km收費(fèi)10元,超過3km的部分按每千米加1.8元收費(fèi),在這過程中該駕駛員共收到車費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某氣象臺(tái)發(fā)現(xiàn):在某段時(shí)間里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知這段時(shí)間有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,則這一段時(shí)間有( 。
A.9天
B.11天
C.13天
D.22天

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店用4500元購進(jìn)一批襯衫,很快售完,服裝店老板又用2100元購進(jìn)第二批該款式的襯衫,進(jìn)貨量是第一次的一半,但進(jìn)價(jià)每件比第一批降低了10元.
(1)這兩次各購進(jìn)這種襯衫多少件?
(2)若第一批襯衫的售價(jià)是200元/件,老板想讓這兩批襯衫售完后的總利潤不低于1950元,則第二批襯衫每件至少要售多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(﹣1,0),B(4,0),與y軸交于C(0,﹣2).

(1)求拋物線的解析式;
(2)H是C關(guān)于x軸的對(duì)稱點(diǎn),P是拋物線上的一點(diǎn),當(dāng)△PBH與△AOC相似時(shí),求符合條件的P點(diǎn)的坐標(biāo)(求出兩點(diǎn)即可);
(3)過點(diǎn)C作CD∥AB,CD交拋物線于點(diǎn)D,點(diǎn)M是線段CD上的一動(dòng)點(diǎn),作直線MN與線段AC交于點(diǎn)N,與x軸交于點(diǎn)E,且∠BME=∠BDC,當(dāng)CN的值最大時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=CB,ABC=90°,FAB延長線上一點(diǎn),點(diǎn)EBC上,且AE=CF

1)求證:ABE≌△CBF;

2)若CAE=30°,求ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個(gè)長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識(shí),回答下列問題:

(1)小明總共剪開了_______條棱.

(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個(gè)長方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請(qǐng)你幫助小明在①上補(bǔ)全.

(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個(gè)長方體紙盒的底面是一個(gè)正方形,并且這個(gè)長方體紙盒所有棱長的和是880cm,求這個(gè)長方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD、DEFG都是正方形,ABCG交于點(diǎn)下列結(jié)論:;;其中正確的有______;

查看答案和解析>>

同步練習(xí)冊(cè)答案