【題目】如圖,在直角坐標系中,⊙M經(jīng)過原點O(0,0),點A(,0)與點B(0,-),點D在劣弧上,連結(jié)BD交x軸于點C,且∠COD=∠CBO.
(1)求⊙M的半徑;
(2)求證:BD平分∠ABO;
(3)在線段BD的延長線上找一點E,使得直線AE恰為⊙M的切線,求此時點E的坐標.
【答案】(1)M的半徑r=;(2)證明見解析;(3)點E的坐標為(,).
【解析】試題分析:根據(jù)點A和點B的坐標得出OA和OB的長度,根據(jù)Rt△AOB的勾股定理得出AB的長度,然后得出半徑;根據(jù)同弧所對的圓周角得出∠ABD=∠COD,然后結(jié)合已知條件得出角平分線;根據(jù)角平分線得出△ABE≌△HBE,從而得出BH=BA=2,從而求出OH的長度,即點E的縱坐標,根據(jù)Rt△AOB的三角函數(shù)得出∠ABO的度數(shù),從而得出∠CBO的度數(shù),然后根據(jù)Rt△HBE得出HE的長度,即點E的橫坐標.
試題解析:(1)∵點A為(,0),點B為(0,-) ∴OA=OB=
∴根據(jù)Rt△AOB的勾股定理可得:AB=2∴M的半徑r=AB=.
(2)根據(jù)同弧所對的圓周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO
∴BD平分∠ABO
(3)如圖,由(2)中的角平分線可得△ABE≌△HBE ∴BH=BA=2∴OH=2-=
在Rt△AOB中,∴∠ABO=60° ∴∠CBO=30°
在Rt△HBE中,HE=∴點E的坐標為(,)
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習了正方形之后,給同桌小文出了道題,從下列四個條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個作為補充條件,使ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認為其中錯誤的是( )
A.①②
B.②③
C.①③
D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,把矩形沿AC折疊,點B落在點E處,AE與DC的交點為O,連接DE.
(1)求證:△ADE≌△CED;
(2)求證:DE∥AC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一張復印出來的紙上,一個三角形的一條邊由原圖中的2cm變成了6cm,則復印出的三角形的面積是原圖中三角形面積的( )
A. 3倍B. 6倍C. 9倍D. 12倍
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=12,點E在邊BC上,BE=EC,將△DCE沿DE對折至△DFE,延長EF交邊AB于點G,連接DG、BF,給出以下結(jié)論:①△DAG≌△DFG;②BG=2AG;③S△DGF=120;④S△BEF= .其中所有正確結(jié)論的個數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式正確的是( )
A.(a+1)﹣(﹣b+c)=a+1+b+c
B.a2﹣2(a﹣b+c)=a2﹣2a﹣b+c
C.a﹣2b+7c=a﹣(2b﹣7c)
D.a﹣b+c﹣d=(a﹣d)﹣(b+c)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com