精英家教網 > 初中數學 > 題目詳情

拋物線與x軸交點的橫坐標為-2和1,且過點(2,8),它的關系式為(  ).

[  ]

A.y=2x2-2x-4

B.y=-2x2+2x-4

C.y=x2+x-2

D.y=2x2+2x-4

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

閱讀材料:當拋物線的解析式中含有字母系數時,隨著系數中字母取值的不同,拋物線的頂點坐標也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點坐標為(m,2m-1),設頂點為P(x0,y0),則:
x0=m        …(3)
y0=2m-1  …(4)

當m的值變化時,頂點橫、縱坐標x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見,不論m取任何實數時,拋物線的頂點坐標都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數學方法是
 
,其中運用的公式是
 
.由(3)、(4)得到(5)所用的數學方法是
 

②根據閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點縱坐標y與橫坐標x之間的函數關系式.
③是否存在實數m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

科目:初中數學 來源: 題型:

已知拋物線y=x2+x+4.
(1)求此拋物線對稱軸與橫軸交點A的坐標;
(2)設原點為O,在拋物線上任取點P,求三角形OAP的面積的最小值;
(3)若x為整數,在使得y為完全平方數的所有x的值中,設x的最大值為a,最小值為b,次小值為c.(注:一個數如果是另一個整數的完全平方,那么我們就稱這個數為完全平方數.)求a、b、c的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知拋物線y=x2+x+4.
(1)求此拋物線對稱軸與橫軸交點A的坐標;
(2)設原點為O,在拋物線上任取點P,求三角形OAP的面積的最小值;
(3)若x為整數,在使得y為完全平方數的所有x的值中,設x的最大值為a,最小值為b,次小值為c.(注:一個數如果是另一個整數的完全平方,那么我們就稱這個數為完全平方數.)求a、b、c的值.

查看答案和解析>>

科目:初中數學 來源:淮北模擬 題型:解答題

閱讀材料:當拋物線的解析式中含有字母系數時,隨著系數中字母取值的不同,拋物線的頂點坐標也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點坐標為(m,2m-1),設頂點為P(x0,y0),則:
x0=m        …(3)
y0=2m-1  …(4)

當m的值變化時,頂點橫、縱坐標x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見,不論m取任何實數時,拋物線的頂點坐標都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數學方法是______,其中運用的公式是______.由(3)、(4)得到(5)所用的數學方法是______.
②根據閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點縱坐標y與橫坐標x之間的函數關系式.
③是否存在實數m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

科目:初中數學 來源:2010-2011學年安徽省淮北市五校第五次聯考九年級數學試卷(解析版) 題型:解答題

閱讀材料:當拋物線的解析式中含有字母系數時,隨著系數中字母取值的不同,拋物線的頂點坐標也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點坐標為(m,2m-1),設頂點為P(x,y),則:
當m的值變化時,頂點橫、縱坐標x,y的值也隨之變化,將(3)代入(4)
得:y=2x-1.…(5)
可見,不論m取任何實數時,拋物線的頂點坐標都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數學方法是______,其中運用的公式是______.由(3)、(4)得到(5)所用的數學方法是______.
②根據閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點縱坐標y與橫坐標x之間的函數關系式.
③是否存在實數m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

同步練習冊答案