【題目】如圖,在平面直角坐標(biāo)系中,直角△ABC的三個頂點分別是A(﹣3,1),B(0,3),C(0,1)
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C1;
(2)分別連結(jié)AB1、BA1后,求四邊形AB1A1B的面積.
【答案】
(1)
解:如圖,△A1B1C1為所作,
(2)
解:四邊形AB1A1B的面積= ×6×4=12
【解析】(1)利用網(wǎng)格特點,延長AC到A1使A1C=AC,延長BC到B1使B1C=BC,C點的對應(yīng)點C1與C點重合,則△A1B1C1滿足條件;(2)四邊形AB1A1B的對角線互相垂直平分,則四邊形AB1A1B為菱形,然后利用菱形的面積公式計算即可.本題考查了作圖﹣旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對應(yīng)角都相等都等于旋轉(zhuǎn)角,對應(yīng)線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應(yīng)點,順次連接得出旋轉(zhuǎn)后的圖形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點都在格點上,點A的坐標(biāo)為(2,4),請解答下列問題:
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標(biāo).
(2)畫出△A1B1C1繞原點O旋轉(zhuǎn)180°后得到的△A2B2C2,并寫出點A2的坐標(biāo).
【答案】(1)作圖見解析;點A1的坐標(biāo)(2,﹣4);(2)作圖見解析;點A2的坐標(biāo)(﹣2,4).
【解析】
試題分析:(1)分別找出A、B、C三點關(guān)于x軸的對稱點,再順次連接,然后根據(jù)圖形寫出A點坐標(biāo);
(2)將△A1B1C1中的各點A1、B1、C1繞原點O旋轉(zhuǎn)180°后,得到相應(yīng)的對應(yīng)點A2、B2、C2,連接各對應(yīng)點即得△A2B2C2.
試題解析:(1)如圖所示:點A1的坐標(biāo)(2,﹣4);
(2)如圖所示,點A2的坐標(biāo)(﹣2,4).
考點:1.作圖-旋轉(zhuǎn)變換;2.作圖-軸對稱變換.
【題型】解答題
【結(jié)束】
18
【題目】觀察下面的點陣圖和相應(yīng)的等式,探究其中的規(guī)律:
(1)認真觀察,并在④后面的橫線上寫出相應(yīng)的等式.
①1=1 ②1+2==3 ③1+2+3==6 ④ …
(2)結(jié)合(1)觀察下列點陣圖,并在⑤后面的橫線上寫出相應(yīng)的等式.
1=12②1+3=22③3+6=32④6+10=42⑤ …
(3)通過猜想,寫出(2)中與第n個點陣相對應(yīng)的等式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此類推,則a2018的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;
(2)若每塊小矩形的面積為10,四個正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高校共有5個大餐廳和2個小餐廳。經(jīng)過測試:同時開放1個大餐廳和2個小餐廳,可供1680名學(xué)生就餐;同時開放2個大餐廳和1個小餐廳,可供2280名學(xué)生就餐。
(1)1個大餐廳和1個小餐廳分別可供多少名學(xué)生就餐?
(2)若7個餐廳同時開放,能否供全校的5300名學(xué)生就餐?請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在線段AB的同側(cè)作射線AM和BN,若∠MAB與∠NBA的平分線分別交射線BN,AM于點E,F(xiàn),AE和BF交于點P.如圖,點點同學(xué)發(fā)現(xiàn)當(dāng)射線AM,BN交于點C;且∠ACB=60°時,有以下兩個結(jié)論:
①∠APB=120°;②AF+BE=AB.
那么,當(dāng)AM∥BN時:
(1)點點發(fā)現(xiàn)的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請求出∠APB的度數(shù),寫出AF,BE,AB長度之間的等量關(guān)系,并給予證明;
(2)設(shè)點Q為線段AE上一點,QB=5,若AF+BE=16,四邊形ABEF的面積為32,求AQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,B點坐標(biāo)為(3,0),與y軸交于點C(0,﹣3)
(1)求拋物線的解析式;
(2)點P在拋物線位于第四象限的部分上運動,當(dāng)四邊形ABPC的面積最大時,求點P的坐標(biāo)和四邊形ABPC的最大面積.
(3)直線l經(jīng)過A、C兩點,點Q在拋物線位于y軸左側(cè)的部分上運動,直線m經(jīng)過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠計劃生產(chǎn)A、B兩種產(chǎn)品共50件,需購買甲、乙兩種材料.生產(chǎn)一件A產(chǎn)品需甲種材料30千克、乙種材料10千克;生產(chǎn)一件B產(chǎn)品需甲、乙兩種材料各20千克.經(jīng)測算,購買甲、乙兩種材料各1千克共需資金40元,購買甲種材料2千克和乙種材料3千克共需資金105元.
(1)甲、乙兩種材料每千克分別是多少元?
(2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不超過38000元,且生產(chǎn)B產(chǎn)品不少于28件,問符合條件的生產(chǎn)方案有哪幾種?
(3)在(2)的條件下,若生產(chǎn)一件A產(chǎn)品需加工費200元,生產(chǎn)一件B產(chǎn)品需加工費300元,應(yīng)選擇哪種生產(chǎn)方案,使生產(chǎn)這50件產(chǎn)品的成本最低?(成本=材料費+加工費)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD的頂點A在第三象限,對角線AC的中點在坐標(biāo)原點,一邊AB與x軸平行且AB=2,若點A的坐標(biāo)為(a,b),則點D的坐標(biāo)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com