【題目】在平面直角坐標(biāo)系xOy中的圖形M,N,給出如下定義:P為圖形M上任意一點(diǎn),Q為圖形N上任意一點(diǎn),如果P,Q兩點(diǎn)間的距離有最小值,那么稱這個(gè)最小值為圖形M,N間的“距離”,記作特別地,若圖形M,N有公共點(diǎn),規(guī)定.
如圖1,的半徑為2,
點(diǎn),,則______,______.
已知直線l:與的“距離”,求b的值.
已知點(diǎn),,的圓心為,半徑為若,請直接寫出m的取值范圍______.
【答案】(1)1 , 3,;(2)m的值為或或.
【解析】
根據(jù)圖形M,N間的“距離”的定義即可解決問題;
設(shè)直線l交x軸,y軸于點(diǎn)P,Q,作于H,OH交于根據(jù)與的“距離”,構(gòu)建方程即可解決問題;
如圖2中,設(shè)AC交x軸于分四種情形分別求解即可解決問題.
如圖1中,連接OB交于點(diǎn)E,設(shè)交y軸于點(diǎn)F.
由題意:,,
故答案為1,3.
如圖1中,設(shè)直線l交x軸,y軸于點(diǎn)P,Q,作于H,OH交于G.
由題意:,,
,,,
,
,
直線l:與的“距離”,
,
.
如圖2中,設(shè)AC交x軸于E.
,
當(dāng)時(shí),滿足條件,
當(dāng)時(shí),滿足條件,
假設(shè)滿足條件,作,
由題意,
,
,
.
觀察圖象可知:當(dāng)時(shí),滿足條件,
假設(shè)滿足條件,作于G,
由題意;,
,
,
,
綜上所述,滿足條件的m的值為或或.
故答案為4或或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AF于M,N,下列結(jié)論:①AF⊥BG;②BN=NF;③;④S四邊形CGNF=S四邊形ANGD.其中正確的結(jié)論的序號是( 。
A.①③B.②④C.①②D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,是邊上一點(diǎn),將沿直線對折,得到.
(1)當(dāng)平分時(shí),求的長;
(2)連接,當(dāng),求的面積;
(3)當(dāng)射線交于點(diǎn)時(shí),求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計(jì)劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請結(jié)合圖中所給的信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有______人,在扇形統(tǒng)計(jì)圖中,m的值是______,將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)在要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動(dòng),請畫樹狀圖或列表求出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出方程ax2+bx+c=0的兩個(gè)根;
(2)寫出不等式ax2+bx+c>0的解集;
(3)若方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知k是常數(shù),拋物線y=x2+(k2+k-6)x+3k的對稱軸是y軸,并且與x軸有兩個(gè)交點(diǎn).
(1)求k的值:
(2)若點(diǎn)P在拋物線y=x2+(k2+k-6)x+3k上,且P到y軸的距離是2,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為,且過點(diǎn),
(1)求拋物線的解析式;
(2)當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】書籍是人類進(jìn)步的階梯.聯(lián)合國教科文組織把每年的4月23日確定為“世界讀書日”.某校為了了解該校學(xué)生一個(gè)學(xué)期閱讀課外書籍的情況,在全校范圍內(nèi)隨機(jī)對100名學(xué)生進(jìn)行了問卷調(diào)查,根據(jù)調(diào)查的結(jié)果,繪制了統(tǒng)計(jì)圖表的一部分:一個(gè)學(xué)期平均一天閱讀課外書籍所有時(shí)間統(tǒng)計(jì)表
時(shí)間(分鐘) | 20 | 40 | 60 | 80 | 100 | 120 |
人數(shù)(名) | 43 | 31 | 15 | 5 | 4 | 2 |
請你根據(jù)以上信息解答下列問題:
(1)補(bǔ)全圖1、圖2;
(2)這100名學(xué)生一個(gè)學(xué)期平均每人閱讀課外書籍多少本?若該校共有4000名學(xué)生,請你估計(jì)這個(gè)學(xué)校學(xué)生一個(gè)學(xué)期閱讀課外書籍共多少本?
(3)根據(jù)統(tǒng)計(jì)表,求一個(gè)學(xué)期平均一天閱讀課外書籍所用時(shí)間的眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且,頂點(diǎn)為.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸的垂線,垂足為,若,四邊形的面積為,求關(guān)于的函數(shù)解析式,并寫出的取值范圍;
(3)探索:線段上是否存在點(diǎn),使為等腰三角形?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請說呀理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com