作业宝如圖,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分線與AB的垂直平分線OD交于點(diǎn)O,將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC度數(shù)為_(kāi)_______°.

112
分析:連接OB、OC,根據(jù)角平分線的定義求出∠BAO,根據(jù)等腰三角形兩底角相等求出∠ABC,再根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得OA=OB,根據(jù)等邊對(duì)等角可得∠ABO=∠BAO,再求出∠OBC,然后判斷出點(diǎn)O是△ABC的外心,根據(jù)三角形外心的性質(zhì)可得OB=OC,再根據(jù)等邊對(duì)等角求出∠OCB=∠OBC,根據(jù)翻折的性質(zhì)可得OE=CE,然后根據(jù)等邊對(duì)等角求出∠COE,再利用三角形的內(nèi)角和定理列式計(jì)算即可得解.
解答:解:如圖,連接OB、OC,
∵∠BAC=56°,AO為∠BAC的平分線,
∴∠BAO=∠BAC=×56°=28°,
又∵AB=AC,
∴∠ABC=(180°-∠BAC)=(180°-56°)=62°,
∵DO是AB的垂直平分線,
∴OA=OB,
∴∠ABO=∠BAO=28°,
∴∠OBC=∠ABC-∠ABO=62°-28°=34°,
∵DO是AB的垂直平分線,AO為∠BAC的平分線,
∴點(diǎn)O是△ABC的外心,
∴OB=OC,
∴∠OCB=∠OBC=34°,
∵將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,
∴OE=CE,
∴∠COE=∠OCB=34°,
在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-34°-34°=112°.
故答案為:112.
點(diǎn)評(píng):本題考查了線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì),等腰三角形三線合一的性質(zhì),等邊對(duì)等角的性質(zhì),以及翻折變換的性質(zhì),綜合性較強(qiáng),難度較大,作輔助線,構(gòu)造出等腰三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫(huà)∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案