【題目】已知,在邊長為1的小正方形組成的網(wǎng)格中,點

1)在網(wǎng)格中正確畫出平面直角坐標系;

2)在平面直角坐標系中作出關于軸對稱的圖形,并將點先向右平移4個單位長度再向下平移1個單位長度得到點,寫出點的坐標;

3)順次連接點得到是等腰直角三角形嗎?請說明理由.

【答案】(1)詳見解析;(2)圖詳見解析,點的坐標為;(3是等腰直角三角形,理由詳見解析.

【解析】

1)根據(jù)所給的已知點的坐標畫直角坐標系;

2)直接利用關于軸對稱點的性質(zhì)得出對應點位置進而得出答案,再利用平移的性質(zhì)求得點的坐標;

3)分別計算出三邊的長,根據(jù)勾股定理的逆定理進行判斷即可.

1)所建立直角坐標系如下所示:

2如上圖所示,

觀察圖象,點的坐標為

關于軸對稱的點的坐標為,

將點先向右平移4個單位長度再向下平移1個單位長度得到點,

∴點的橫坐標為:,縱坐標為:

∴點的坐標為

3是等腰直角三角形.

∵點、、的坐標分別為、

,

,

,

,

是等腰直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在某次足球訓練中,一隊員在距離球門12米處挑射,正好射中了2.4米高的球門橫梁.若足球運行的路線是拋物線y=ax2+bx+c(如圖).現(xiàn)有四個結論:①a﹣b>0;②a<﹣;③﹣<a<0;④0<b<﹣12a.其中正確的結論是( 。

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在RtABC中,∠ACB90°,ABAC,點D在直線AB上,連接CD,在CD的右側作CECD,CDCE

1)如圖1,①點DAB邊上,直接寫出線段BE和線段AD的關系;

2)如圖2,點DB右側,BD1,BE5,求CE的長.

3)拓展延伸

如圖3,∠DCE=∠DBE90,CDCE,BC,BE1,請直接寫出線段EC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點是第一象限內(nèi)的點,直線軸于點,交軸負半軸于點.連接,

1)求的面積;

2)求點的坐標和的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚中華民族傳統(tǒng)文化,某市舉辦了中小學生國學經(jīng)典大賽,比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經(jīng).比賽形式分單人組雙人組”.

(1)小華參加單人組,他從中隨機抽取一個比賽項目,恰好抽中論語的概率是多少?

(2)小明和小紅組成一個小組參加雙人組比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次.則恰好小明抽中唐詩且小紅抽中宋詞的概率是多少?小明和小紅都沒有抽到三字經(jīng)的概率是多少?請用畫樹狀圖或列表的方法進行說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.

1)求從袋中隨機摸出一球,標號是1的概率;

2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】運動會中裁判員使用的某品牌遮陽傘如圖1所示,圖2是其剖面圖,若AG平分∠BAC與∠EDF,ABED,求證:ACDF

請將橫線上的證明過程和依據(jù)的定理補充完整.

證明:∵ABDE

∴∠   =∠      

AG平分∠BAC,AG平分∠EDF(已知)

∴∠DAC=∠DAB,∠GDF=∠GDE   ).

∴∠DAC=∠GDF   ).

ACDF   ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是某古城幾個地名的平面示意圖,已知民俗街和博物館的坐標分別為點,請仔細觀察示意圖完成以下問題.

1)請根據(jù)題意在圖上建立平面直角坐標系.

2)在(1)的條件下,寫出圖上B,D兩地點的坐標.

3)某周末甲,乙,丙,丁等4位同學分別到古城樓,民俗街,文化廣場,博物館四個地點游玩,且每人只去一個地點,老師打電話問了趙,錢,孫,李等四位同學,趙說:甲在民俗街,乙在文化廣場;錢說:丙在博物館,乙在民俗街;孫說:丁在民俗街,丙在文化廣場;李說:丁在古城樓,乙在文化廣場.若知道趙,錢,孫,李每人都只說對了一半,則丙同學游玩的地點是     

查看答案和解析>>

同步練習冊答案