精英家教網 > 初中數學 > 題目詳情
已知:在如圖1所示的銳角三角形ABC中,CH⊥AB于點H,點B關于直線CH的對稱點為D,AC邊上一點E滿足∠EDA=∠A,直線DE交直線CH于點F.
(1)求證:BF∥AC;
(2)若AC邊的中點為M,求證:DF=2EM;
(3)當AB=BC時(如圖2),在未添加輔助線和其它字母的條件下,找出圖2中所有與BE相等的線段,并證明你的結論.

【答案】分析:(1)根據點B與點D關于關于直線CH的對稱,可得BF=DF,根據等邊對等角可得∠1=∠2,再證明∠A=∠2,再根據內錯角相等,兩直線平行可證出AC∥FB;
(2)首先取FD的中點N,連接HM、HN,再證明四邊形ENHM是平行四邊形,由平行四邊形的性質可得HN=EM,在Rt△DFH中,∠DHF=90°,DF的中點為N,根據直角三角形中斜邊上的中線等于斜邊的一半可得NH=DF,再利用等量代換可得DF=2EM;
(3)當AB=BC時,在未添加輔助線和其它字母的條件下,原題圖2中所有與BE相等的線段是EF和CE.連接CD,證明△ABE≌△DCE可得BE=CE;由BF=DF得∠CFE=∠BFC.由所得BF∥AC 可得∠BFC=∠ECF,進而得到∠CFE=∠ECF,可得EF=CE,即可得到BE=EF=CE.
解答:證明:(1)如圖1.
∵點B關于直線CH的對稱點為D,CH⊥AB于點H,直線DE交直線CH于點F,
∴BF=DF,DH=BH.
∴∠1=∠2.
又∵∠EDA=∠A,∠EDA=∠1,
∴∠A=∠2.
∴BF∥AC;

(2)如圖2,取FD的中點N,連接HM、HN.
∵H是BD的中點,N是FD的中點,
∴HN∥BF.
由(1)得BF∥AC,
∴HN∥AC,即HN∥EM.
∵在Rt△ACH中,∠AHC=90°,AC邊的中點為M,
,
∴∠A=∠3,
∴∠EDA=∠3,
∴NE∥HM,
∴四邊形ENHM是平行四邊形,
∴HN=EM,
∵在Rt△DFH中,∠DHF=90°,DF的中點為N,
,即DF=2HN,
∴DF=2EM;

(3)當AB=BC時,在未添加輔助線和其它字母的條件下,原題圖2中所有與BE相等的線段是EF和CE. 
證明:連接CD.(如圖3)
∵點B關于直線CH的對稱點為D,CH⊥AB于點H,
∴BC=CD,∠ABC=∠5.
∵AB=BC,
∴∠ABC=180°-2∠A,
 AB=CD.①
∵∠EDA=∠A,
∴∠6=180°-2∠A,AE=DE.②
∴∠ABC=∠6=∠5.
∵∠BDE是△ADE的外角,
∴∠BDE=∠A+∠6.
∵∠BDE=∠4+∠5,
∴∠A=∠4.③
由①,②,③得△ABE≌△DCE.
∴BE=CE. 
由(1)中BF=DF得∠CFE=∠BFC.
由(1)中所得BF∥AC 可得∠BFC=∠ECF.
∴∠CFE=∠ECF.
∴EF=CE.
∴BE=EF.
∴BE=EF=CE.
點評:此題主要考查了平行四邊形的判定與性質,關鍵是熟練掌握平行四邊形的判定方法以及平行四邊形的性質定理.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:在如圖1所示的銳角三角形ABC中,CH⊥AB于點H,點B關于直線CH的對稱點為D,AC邊上一點E滿足∠EDA=∠A,直線DE交直線CH于點F.
(1)求證:BF∥AC;
(2)若AC邊的中點為M,求證:DF=2EM;
(3)當AB=BC時(如圖2),在未添加輔助線和其它字母的條件下,找出圖2中所有與BE相等的線段,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•徐州模擬)已知:在如圖1所示的平面直角坐標系xOy中,A、C兩點的坐標分別為A(4,2),C(n,-2)(其中n>0),點B在x軸的正半軸上.動點P從點O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點C移動,當點P與點C重合時停止運動.設點P移動的路徑的長為l,△POC的面積為S,S與l的函數關系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.
(1)結合以上信息及圖2填空:圖2中的m=
2
5
2
5
;
(2)求B、C兩點的坐標及圖2中OF的長;
(3)若OM是∠AOB的角平分線,且點G與點H分別是線段AO與射線OM上的兩個動點,直接寫出HG+AH的最小值,請在圖3中畫出示意圖并簡述理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:在如圖1所示的平面直角坐標系xOy中,A、C兩點的坐標分別為A(4,2),C(n,-2)(其中n>0),點B在x軸的正半軸上.動點P從點O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點C移動,當點P與點C重合時停止運動.設點P移動的路徑的長為l,△POC的面積為S,S與l的函數關系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

(1)結合以上信息及圖2填空:圖2中的m=
2
5
2
5

(2)求B、C兩點的坐標及圖2中OF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:在如圖1所示的平面直角坐標系xOy中,A,C兩點的坐標分別為A(2,3),C(n,-3)(其中n>0),點B在x軸的正半軸上.動點P從點O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點C移動,當點P與點C重合時停止運動.設點P移動的路徑的長為x,△POC的面積為S,S與x的函數關系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.
(1)求B,C兩點的坐標及圖2中OF的長;
(2)在圖1中,當動點P恰為經過O,B兩點的拋物線W的頂點時,
①求此拋物線W的解析式;
②若點Q在直線y=-1上方的拋物線W上,坐標平面內另有一點R,滿足以B,P,Q,R四點為頂點的四邊形是菱形,求點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:在如圖1所示的平面直角坐標系xOy中,A,C兩點的坐標分別為A(2,3),C(n,-3)(其中n>0),點B在x軸的正半軸上.動點P從點O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點C移動,當點P與點C重合時停止運動.設點P移動的路徑的長為l,△POC的面積為S,S與l的函數關系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

(1)結合以上信息及圖2填空:圖2中的m=
13
13
;
(2)求B,C兩點的坐標及圖2中OF的長;
(3)在圖1中,當動點P恰為經過O,B兩點的拋物線W的頂點時,
①求此拋物線W的解析式;
②若點Q在直線y=-1上方的拋物線W上,坐標平面內另有一點R,滿足以B,P,Q,R四點為頂點的四邊形是菱形,求點Q的坐標.

查看答案和解析>>

同步練習冊答案