【題目】已知拋物線y=3x2+bx+c與直線y=﹣1只有一個公共點(diǎn)M,與平行于x軸的直線l交此拋物線A,B兩點(diǎn)若AB=4,則點(diǎn)M到直線l的距離為( )
A.11B.12C.D.13
【答案】B
【解析】
根據(jù)題意可知,拋物線的頂點(diǎn)M(),則拋物線解析式為:,由AB=4,利用拋物線的對稱性,得點(diǎn)A的橫坐標(biāo)為,代入解析式,求出縱坐標(biāo),然后求出點(diǎn)M到直線l的距離.
解:∵拋物線y=3x2+bx+c與直線y=﹣1只有一個公共點(diǎn)M,
∴點(diǎn)M為拋物線的頂點(diǎn),其坐標(biāo)為:(,),
則拋物線解析式為:,
∵拋物線與平行于x軸的直線l交此拋物線A,B兩點(diǎn),且AB=4,
∴點(diǎn)A的橫坐標(biāo)為:,點(diǎn)B的橫坐標(biāo)為:,
把代入拋物線,得:
,
∴直線l為:,
∴點(diǎn)M到直線l的距離為:11﹣(﹣1)=12;
故選擇:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校2000名學(xué)生的課外閱讀情況,在全校范圍內(nèi)隨機(jī)調(diào)查了50名學(xué)生,得到他們在某一天各自課外閱讀所用時間的數(shù)據(jù),將結(jié)果繪制成頻數(shù)分布直方圖(如圖所示).
(1)請分別計(jì)算這50名學(xué)生在這一天課外閱讀所用時間的眾數(shù)、中位數(shù)和平均數(shù);
(2)請你根據(jù)以上調(diào)查,估計(jì)全校學(xué)生中在這一天課外閱讀所用時間在1.0小時以上(含1.0小時)的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為O直徑,點(diǎn)C為圓上一點(diǎn),將劣弧AC沿弦AC翻折交AB于點(diǎn)D,連接CD,若點(diǎn)D與圓心O不重合,∠BAC=20°,則∠DCA的度數(shù)是()
A.30°B.40°C.50°D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱這個三角形為“智慧三角形”.
理解:
(1)如圖1,已知A、B是⊙O上兩點(diǎn),請?jiān)趫A上找出滿足條件的點(diǎn)C,使△ABC為“智慧三角形”(畫出點(diǎn)C的位置,保留作圖痕跡);
(2)如圖3,在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,點(diǎn)Q是直線y=3上的一點(diǎn),若在⊙O上存在一點(diǎn)P,使得△OPQ為“智慧三角形”,當(dāng)其面積取得最小值時,直接寫出此時PQ的長和點(diǎn)Q的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF.
(2)當(dāng)四邊形ACDE為菱形時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,P是BC上一點(diǎn),且BP=3PC,Q是CD的中點(diǎn).
(1)求證:△ADQ∽△QCP;
(2)若PQ=3,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠ACB=90°,點(diǎn)D是AB中點(diǎn),連CD,過點(diǎn)D作DE⊥BC于E,過A作AF⊥ED的延長線于F.
(1)若∠B=25°,求∠ADC的度數(shù);
(2)求證:DF=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明對函數(shù)y=﹣|x2﹣4|的圖象和性質(zhì)進(jìn)行了探究,其探究過程中的列表如下:
x | … | -3 | ﹣2 | -1 | 0 | 1 | 2 | 3 | … |
y | … | m | 0 | -3 | n | -3 | 0 | -5 | … |
(1)求表中m,n的值;
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了該函數(shù)的圖象;
(3)觀察函數(shù)圖象,寫出一條函數(shù)的性質(zhì);
(4)結(jié)合你所畫的函數(shù)圖象,直接寫出不等式﹣|x2﹣4|>x﹣2的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com