精英家教網 > 初中數學 > 題目詳情
已知:如圖,平行四邊形ABCD中,AE、BE、CF、DF分別平分∠BAD、∠ABC、∠BCD、∠CDA,BE、DF的延長線分別交AD、BC于點M、N,連接EF,若AD=7,AB=4,求EF的長.

【答案】分析:根據平行四邊形的性質和角平分線的定義先證明AM=AB=4,再利用已知條件證明四邊形BNDM是平行四邊形,進而得到BM=DN,BM∥DN,所以四邊形MEFD也是平行四邊形,再利用平行四邊形的性質:對邊相等即可求出DM的長,所以也就求出EF的長.
解答:解:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,AB=CD.
∴∠2=∠3.
∵BE平分∠ABC,
∴∠1=∠2.
∴∠1=∠3.
∴AM=AB=4.
∵AE平分∠BAD,
∴EM=BM,
.同理,CN=CD,DF=DN,
∴AM=CN.
∴AD-AM=BC-CN,即 DM=BN.
∴四邊形BNDM是平行四邊形,
∴BM=DN,BM∥DN.
∴EM=DF,EM∥DF.
∴四邊形MEFD是平行四邊形.
∴EF=MD.
∵DM=AD-AM=AD-AB=7-4=3,
∴EF=DM=3.
點評:本題考查了平行四邊形的性質和判定以及角平分線的定義,題目的難度中等.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

科目:初中數學 來源: 題型:

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中數學 來源:2010-2011學年江蘇省江陰市夏港中學九年級第二學期期中考試數學卷 題型:解答題

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中數學 來源:2011-2012學年山東省九年級上學期階段檢測數學卷(解析版) 題型:解答題

已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

【解析】要證△ADF≌△CBE,因為AE=CF,則兩邊同時加上EF,得到AF=CE,又因為ABCD是平行四邊形,得出AD=CB,∠DAF=∠BCE,從而根據SAS推出兩三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB

 

查看答案和解析>>

科目:初中數學 來源:2011屆江蘇省江陰市九年級第二學期期中考試數學卷 題型:解答題

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

同步練習冊答案