【題目】直線(xiàn)MN與直線(xiàn)PQ垂直相交于O,點(diǎn)A在直線(xiàn)PQ上運(yùn)動(dòng),點(diǎn)B在直線(xiàn)MN上運(yùn)動(dòng).
(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線(xiàn),點(diǎn)A、B在運(yùn)動(dòng)的過(guò)程中,∠AEB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明變化的情況;若不發(fā)生變化,試求出∠AEB的大。
(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線(xiàn),又DE、CE分別是∠ADC和∠BCD的角平分線(xiàn),點(diǎn)A、B在運(yùn)動(dòng)的過(guò)程中,∠CED的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不發(fā)生變化,試求出其值.
(3)如圖3,延長(zhǎng)BA至G,已知∠BAO、∠OAG的角平分線(xiàn)與∠BOQ的角平分線(xiàn)及延長(zhǎng)線(xiàn)相交于E、F,在△AEF中,如果有一個(gè)角是另一個(gè)角的3倍,試求∠ABO的度數(shù).
【答案】
(1)
解:∠AEB的大小不變,
∵直線(xiàn)MN與直線(xiàn)PQ垂直相交于O,
∴∠AOB=90°,
∴∠OAB+∠OBA=90°,
∵AE、BE分別是∠BAO和∠ABO角的平分線(xiàn),
∴∠BAE= ∠OAB,∠ABE= ∠ABO,
∴∠BAE+∠ABE= (∠OAB+∠ABO)=45°,
∴∠AEB=135°
(2)
解:∠CED的大小不變.
延長(zhǎng)AD、BC交于點(diǎn)F.
∵直線(xiàn)MN與直線(xiàn)PQ垂直相交于O,
∴∠AOB=90°,
∴∠OAB+∠OBA=90°,
∴∠PAB+∠MBA=270°,
∵AD、BC分別是∠BAP和∠ABM的角平分線(xiàn),
∴∠BAD= ∠BAP,∠ABC= ∠ABM,
∴∠BAD+∠ABC= (∠PAB+∠ABM)=135°,
∴∠F=45°,
∴∠FDC+∠FCD=135°,
∴∠CDA+∠DCB=225°,
∵DE、CE分別是∠ADC和∠BCD的角平分線(xiàn),
∴∠CDE+∠DCE=112.5°,
∴∠E=67.5°
(3)
解:∵∠BAO與∠BOQ的角平分線(xiàn)相交于E,
∴∠EAO= ∠BAO,∠EOQ= ∠BOQ,
∴∠E=∠EOQ﹣∠EAO= (∠BOQ﹣∠BAO)= ∠ABO,
∵AE、AF分別是∠BAO和∠OAG的角平分線(xiàn),
∴∠EAF=90°.
在△AEF中,
∵有一個(gè)角是另一個(gè)角的3倍,故有:
①∠EAF=3∠E,∠E=30°,∠ABO=60°;
②∠EAF=3∠F,∠E=60°,∠ABO=120°;
③∠F=3∠E,∠E=22.5°,∠ABO=45°;
④∠E=3∠F,∠E=67.5°,∠ABO=135°.
∴∠ABO為60°或45°
【解析】(1)根據(jù)直線(xiàn)MN與直線(xiàn)PQ垂直相交于O可知∠AOB=90°,再由AE、BE分別是∠BAO和∠ABO角的平分線(xiàn)得出∠BAE= ∠OAB,∠ABE= ∠ABO,由三角形內(nèi)角和定理即可得出結(jié)論;(2)延長(zhǎng)AD、BC交于點(diǎn)F,根據(jù)直線(xiàn)MN與直線(xiàn)PQ垂直相交于O可得出∠AOB=90°,進(jìn)而得出∠OAB+∠OBA=90°,故∠PAB+∠MBA=270°,再由AD、BC分別是∠BAP和∠ABM的角平分線(xiàn),可知∠BAD= ∠BAP,∠ABC= ∠ABM,由三角形內(nèi)角和定理可知∠F=45°,再根據(jù)DE、CE分別是∠ADC和∠BCD的角平分線(xiàn)可知∠CDE+∠DCE=112.5°,進(jìn)而得出結(jié)論;(3))由∠BAO與∠BOQ的角平分線(xiàn)相交于E可知∠EAO= ∠BAO,∠EOQ= ∠BOQ,進(jìn)而得出∠E的度數(shù),由AE、AF分別是∠BAO和∠OAG的角平分線(xiàn)可知∠EAF=90°,在△AEF中,由一個(gè)角是另一個(gè)角的3倍分四種情況進(jìn)行分類(lèi)討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E,M分別在邊AB,CD上,且AE=CM,點(diǎn)F,N分別在邊BC,AD上,且DN=BF.
(1)求證:△AEN≌△CMF;
(2)連接EM,F(xiàn)N,若EM⊥FN,求證:EFMN是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC內(nèi)一點(diǎn),且∠ACP=∠PBC,則∠BPC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的方程x2+2x+a=0不存在實(shí)數(shù)根,則a的取值范圍是( ).
A.a<1
B.a>1
C.a≤1
D.a≥1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).
(1)寫(xiě)出點(diǎn)A、B的坐標(biāo):
A( , )、B( , )
(2)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△A′B′C′,則A′B′C′的三個(gè)頂點(diǎn)坐標(biāo)分別是A′( , )、B′( , )、C′( , ).
(3)△ABC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】康宇村2013年的人均收入為30000元,2015年人均收入為36300元,若2013年到2015年人均收入的年平均增長(zhǎng)率相同,求人均收入的年均增長(zhǎng)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 了解飛行員視力的達(dá)標(biāo)率應(yīng)使用抽樣調(diào)查
B. 一組數(shù)據(jù)3,6,6,7,9的中位數(shù)是6
C. 從2000名學(xué)生中選200名學(xué)生進(jìn)行抽樣調(diào)查,樣本容量為2000
D. 一組數(shù)據(jù)1,2,3,4,5的方差是10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列方程中,解是x=2的是( )
A.3x+1=2x﹣1
B.3x﹣1=2x+1
C.3x+2x﹣2=0
D.3x+2x+2=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠A=∠AGE,∠D=∠DGC.
(1)求證:AB∥CD;
(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com