【題目】如圖,在ABCD中,AD=2AB,F(xiàn)是AD的中點,E是AB上一點,連接CF、EF、EC,且CF=EF,下列結(jié)論正確的個數(shù)是( 。
①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】
①只要證明DF=DC,利用平行線的性質(zhì)可得∠DCF=∠DFC=∠FCB;
②延長EF和CD交于M,根據(jù)平行四邊形的性質(zhì)得出AB∥CD,根據(jù)平行線的性質(zhì)得出∠A=∠FDM,證△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD=∠CFD,根據(jù)三角形的外角性質(zhì)求出即可;
③④求出∠ECD=90°,根據(jù)平行線的性質(zhì)得出∠BEC=∠ECD,即可得出答案.
解:∵四邊形ABCD是平行四邊形,
∴AB=CD,AD∥BC,
∵AF=DF,AD=2AB,
∴DF=DC,
∴∠DCF=∠DFC=∠FCB,
∴CF平分∠BCD,故①正確,
延長EF和CD交于M,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠A=∠FDM,
在△EAF和△MDF中,
∴△EAF≌△MDF(ASA),
∴EF=MF,
∵EF=CF,
∴CF=MF,
∴∠FCD=∠M,
∵由(1)知:∠DFC=∠FCD,
∴∠M=∠FCD=∠CFD,
∵∠EFC=∠M+∠FCD=2∠CFD;故②正確,
∵EF=FM=CF,
∴∠ECM=90°,
∵AB∥CD,
∴∠BEC=∠ECM=90°,
∴CE⊥AB,故③④正確,
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A1,A2,A3,A4是數(shù)軸上的四個不同點,若|A1A3|=λ|A1A2|,|A1A4|=η|A1A2|,且,則稱A3,A4調(diào)和分割A(yù)1,A2.已知平面上的點C,D調(diào)和分割點A,B,則( )
A. 點C可能是線段AB的中點
B. 點C,D可能同時在線段AB上
C. 點D一定不是線段AB的中點
D. 點C,D可能同時在線段AB的延長線上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中.過一點分別作坐標(biāo)軸的垂線,若與坐標(biāo)軸圍成矩形的周長的數(shù)值與面積的數(shù)值相等,則這個點叫做和諧點.例如.圖中過點P分別作x軸,y軸的垂線.與坐標(biāo)軸圍成矩形OAPB的周長的數(shù)值與面積的數(shù)值相等,則點P是和諧點.
(1)判斷點M(1,2),N(4,4)是否為和諧點,并說明理由;
(2)若和諧點P(a,3)在直線y=﹣x+b(b為常數(shù))上,求a,b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊余料ABCD,AD∥BC,現(xiàn)進(jìn)行如下操作:以點B為圓心,適當(dāng)長為半徑畫弧,分別交BA,BC于點G,H;再分別以點G,H為圓心,大于GH的長為半徑畫弧,兩弧在∠ABC內(nèi)部相交于點O,畫射線BO,交AD于點E.
(1)求證:AB=AE;
(2)若∠A=100°,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補(bǔ).
(1)試判斷直線AB與CD的位置關(guān)系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上的一點且GH⊥EG.求證:PF∥GH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,O是等邊△ABC內(nèi)一點,連接OA、OB、OC,且OA=3,OB=4,OC=5,將△BAO繞點B順時針旋轉(zhuǎn)后得到△BCD,連接OD.求:
①旋轉(zhuǎn)角的度數(shù);
②線段OD的長;
③∠BDC的度數(shù).
(2)如圖2所示,O是等腰直角△ABC(∠ABC=90°)內(nèi)一點,連接OA、OB、OC,將△BAO繞點B順時針旋轉(zhuǎn)后得到△BCD,連接OD.當(dāng)OA、OB、OC滿足什么條件時,∠ODC=90°?請給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射線繞原點從數(shù)軸的正半軸逆時針旋轉(zhuǎn)一定的角度(),射線上的一點與原點的距離()為,并規(guī)定:當(dāng)或時,點的位置記作;當(dāng)時,點的位置記作.如圖,點、的位置表示為,.回答下列問題:
(1)已知點,點,則點與點的距離為 ;線段的中點的位置是( , ).
(2)已知點,點,,點從點出發(fā),以每秒2個單位長度的速度在線段上來回運(yùn)動;同時射線以每秒10°的速度繞原點逆時針旋轉(zhuǎn),當(dāng)時間(其中)為何值時,?并求出此時三角形的面積.
(3)直接寫出位置滿足的所有點所圍成的圖形面積.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有下列四種結(jié)論:①AB=AD;②∠B=∠D;③∠BAC=∠DAC;④BC=DC.以其中的2個結(jié)論作為依據(jù)不能判定△ABC≌△ADC的是( )
A. ①② B. ①③ C. ①④ D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 我們知道在同一平面內(nèi),兩條平行直線的交點有0個,兩條相交直線的交點有1個,平面內(nèi)三條平行直線的交點有0個,經(jīng)過同一點的三條直線的交點有1個……
(1)平面上有三條互不重合的直線,請畫圖探究它們的交點個數(shù);
(2)若平面內(nèi)的五條直線恰有4個交點,請畫出符合條件的所有圖形;
(3)在平面內(nèi)畫出10條直線,使它們的交點個數(shù)恰好是32.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com