【題目】如圖,P為正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),連接AP,過點(diǎn)B作BQ⊥AP交CD于點(diǎn)Q,將△BQC沿BQ所在的直線對(duì)折得到△BQC′,延長QC′交BA的延長線于點(diǎn)M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)AB=3,BP=2PC,求QM的長;
(3)當(dāng)BP=m,PC=n時(shí),求AM的長.
【答案】(1)AP=BQ;(2)(3)
【解析】
試題分析:(1)要證AP=BQ,只需證△PBA≌△QCB即可;
(2)過點(diǎn)Q作QH⊥AB于H,如圖.易得QH=BC=AB=3,BP=2,PC=1,然后運(yùn)用勾股定理可求得AP(即BQ)=,BH=2.易得DC∥AB,從而有∠CQB=∠QBA.由折疊可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.設(shè)QM=x,則有MB=x,MH=x﹣2.在Rt△MHQ中運(yùn)用勾股定理就可解決問題;
(3)過點(diǎn)Q作QH⊥AB于H,如圖,同(2)的方法求出QM的長,就可得到AM的長.
解:(1)AP=BQ.
理由:∵四邊形ABCD是正方形,
∴AB=BC,∠ABC=∠C=90°,
∴∠ABQ+∠CBQ=90°.
∵BQ⊥AP,∴∠PAB+∠QBA=90°,
∴∠PAB=∠CBQ.
在△PBA和△QCB中,
,
∴△PBA≌△QCB,
∴AP=BQ;
(2)過點(diǎn)Q作QH⊥AB于H,如圖.
∵四邊形ABCD是正方形,
∴QH=BC=AB=3.
∵BP=2PC,
∴BP=2,PC=1,
∴BQ=AP===,
∴BH===2.
∵四邊形ABCD是正方形,
∴DC∥AB,
∴∠CQB=∠QBA.
由折疊可得∠C′QB=∠CQB,
∴∠QBA=∠C′QB,
∴MQ=MB.
設(shè)QM=x,則有MB=x,MH=x﹣2.
在Rt△MHQ中,
根據(jù)勾股定理可得x2=(x﹣2)2+32,
解得x=.
∴QM的長為;
(3)過點(diǎn)Q作QH⊥AB于H,如圖.
∵四邊形ABCD是正方形,BP=m,PC=n,
∴QH=BC=AB=m+n.
∴BQ2=AP2=AB2+PB2,
∴BH2=BQ2﹣QH2=AB2+PB2﹣AB2=PB2,
∴BH=PB=m.
設(shè)QM=x,則有MB=QM=x,MH=x﹣m.
在Rt△MHQ中,
根據(jù)勾股定理可得x2=(x﹣m)2+(m+n)2,
解得x=m+n+,
∴AM=MB﹣AB=m+n+﹣m﹣n=.
∴AM的長為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD被直線EF所截,∠1=50°,下列說法錯(cuò)誤的是( )
A.如果∠5=50°,那么AB∥CD B.如果∠4=130°,那么AB∥CD
C.如果∠3=130°,那么AB∥CD D.如果∠2=50°,那么AB∥CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮和小剛進(jìn)行賽跑訓(xùn)練,他們選擇了一個(gè)土坡,按同一路線同時(shí)出發(fā),從坡腳跑到坡頂再原路返回坡腳.他們倆上坡的平均速度不同,下坡的平均速度則是各自上坡平均速度的1.5倍.設(shè)兩人出發(fā)x min后距出發(fā)點(diǎn)的距離為y m.圖中折線表示小亮在整個(gè)訓(xùn)練中y與x的函數(shù)關(guān)系,其中A點(diǎn)在x軸上,M點(diǎn)坐標(biāo)為(2,0).
(1)A點(diǎn)所表示的實(shí)際意義是 ;= ;
(2)求出AB所在直線的函數(shù)關(guān)系式;
(3)如果小剛上坡平均速度是小亮上坡平均速度的一半,那么兩人出發(fā)后多長時(shí)間第一次相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由一些完全相同的小正方體搭成的幾何體的俯視圖和左視圖,組成這個(gè)幾何體的小正方體的個(gè)數(shù)是( )
A.5或6或7 B.6或7 C.6或7或8 D.7或8或9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
①﹣10+8
②﹣20+(﹣14)﹣(﹣18)﹣13
③2﹣2÷(﹣)×3
④﹣14﹣×[3﹣(﹣3)2]
⑤﹣24×(﹣+﹣)
⑥﹣22+3×(﹣2)﹣(﹣4)2÷(﹣8)﹣(﹣1)100.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OC=10cm,直線l⊥CO,垂足為H,交⊙O于A,B兩點(diǎn),AB=16cm,直線l平移多少厘米時(shí)能與⊙O相切?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圓周率π=3.1415926…,將π精確到千分位的結(jié)果是( )
A. 3.1 B. 3.14 C. 3.141 D. 3.142
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的函數(shù)表達(dá)式為y1=﹣3x+3,且l1與x軸交于點(diǎn)D,直線l2:y2=kx+b經(jīng)過點(diǎn)A,B,與直線l1交于點(diǎn)C.
(1)求直線l2的函數(shù)表達(dá)式及C點(diǎn)坐標(biāo);
(2)求△ADC的面積;
(3)當(dāng)x滿足何值時(shí),y1>y2;(直接寫出結(jié)果)
(4)在直角坐標(biāo)系中有點(diǎn)E,和A,C,D構(gòu)成平行四邊形,請(qǐng)直接寫出E點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com