(2013•石景山區(qū)二模)如圖,拋物線y=-x2+ax+b過(guò)點(diǎn)A(-1,0),B(3,0),其對(duì)稱軸與x軸的交點(diǎn)為C,反比例函數(shù)y=
kx
(x>0,k是常數(shù))的圖象經(jīng)過(guò)拋物線的頂點(diǎn)D.
(1)求拋物線和反比例函數(shù)的解析式.
(2)在線段DC上任取一點(diǎn)E,過(guò)點(diǎn)E作x軸平行線,交y軸于點(diǎn)F、交雙曲線于點(diǎn)G,聯(lián)結(jié)DF、DG、FC、GC.
①若△DFG的面積為4,求點(diǎn)G的坐標(biāo);
②判斷直線FC和DG的位置關(guān)系,請(qǐng)說(shuō)明理由;
③當(dāng)DF=GC時(shí),求直線DG的函數(shù)解析式.
分析:(1)將A與B坐標(biāo)代入拋物線解析式求出a與b的值,確定出拋物線解析式,以及頂點(diǎn)D坐標(biāo),將D坐標(biāo)代入反比例解析式求出k的值,即可確定出反比例解析式;
(2)①設(shè)點(diǎn)G的坐標(biāo)為(m,
4
m
),根據(jù)圖形表示出E與F坐標(biāo),進(jìn)而表示出FG與DE的長(zhǎng),根據(jù)三角形DFG面積為4列出關(guān)于m的方程,求出方程的解得到m的值,即可確定出G坐標(biāo);
②直線FC和DG的位置關(guān)系為平行,理由為:由C的坐標(biāo)確定出OC的長(zhǎng),進(jìn)而表示出EC,EG,DE,根據(jù)兩邊對(duì)應(yīng)成比例且?jiàn)A角相等的兩三角形相似得到三角形DEG與三角形FEG相似,由相似三角形的對(duì)應(yīng)角相等得到一對(duì)內(nèi)錯(cuò)角相等,利用內(nèi)錯(cuò)角相等兩直線平行即可得證;
③由FC與DG平行,當(dāng)FD=CG時(shí),有兩種情況:(i)當(dāng)FD∥CG時(shí),四邊形DFCG是平行四邊形,由上題的比例式及平行四邊形的對(duì)角線互相平分得到m-1=1,求出m的值,確定出G坐標(biāo),設(shè)直線DG解析式為y=kx+b,將D與G坐標(biāo)代入求出k與b的值,求出此時(shí)直線DG解析式;(ii)當(dāng)FD與CG所在直線不平行時(shí),四邊形ADCB是等腰梯形,則DC=FG,求出此時(shí)m的值,確定出G坐標(biāo),設(shè)直線DG解析式為y=mx+n,將D與G坐標(biāo)代入求出m與n的值,求出此時(shí)直線DG解析式,綜上,得到滿足題意直線DG的解析式.
解答:解:(1)∵拋物線y=-x2+ax+b過(guò)點(diǎn)A(-1,0),B(3,0),
-1-a+b=0
-9a+3a+b=0
,
解得:
a=2
b=3
,
∴拋物線的解析式為y=-x2+2x+3,頂點(diǎn)D(1,4),
∵函數(shù)y=
k
x
(x>0,m是常數(shù))圖象經(jīng)過(guò)D(1,4),
∴k=4,
則反比例解析式為y=
4
x

(2)①設(shè)G點(diǎn)的坐標(biāo)為(m,
4
m
),
據(jù)題意,可得E點(diǎn)的坐標(biāo)為(1,
4
m
),F(xiàn)點(diǎn)的坐標(biāo)為(0,
4
m
),
∵m>1,
∴FG=m,DE=4-
4
m
,
由△DFG的面積為4,即
1
2
m(4-
4
m
)=4,得m=3,
∴點(diǎn)G的坐標(biāo)為(3,
4
3
);
②直線FC和DG平行.理由如下:
據(jù)題意,點(diǎn)C的坐標(biāo)為(1,0),F(xiàn)E=1,
∵m>1,易得EC=
4
m
,EG=m-1,DE=4-
4
m
,
GE
EF
=
m-1
1
=m-1,
DE
CE
=
4-
4
m
4
m
=m-1,
GE
EF
=
DE
CE

∵∠DEG=∠FEC,
∴△DEG∽△FEC,
∴∠EDG=∠ECF,
∴FC∥DG;
③∵FC∥DG,
∴當(dāng)FD=CG時(shí),有兩種情況:
(i)當(dāng)FD∥CG時(shí),四邊形DFCG是平行四邊形,
由上題得
GE
EF
=
DE
CE
=m-1,
∴m-1=1,即m=2,
∴點(diǎn)G的坐標(biāo)是(2,2),
設(shè)直線DG的函數(shù)解析式為y=kx+b,把點(diǎn)D,G的坐標(biāo)代入,得
4=k+b
2=2k+b
,
解得:
k=-2
b=6.
,
∴直線DG的函數(shù)解析式是y=-2x+6;
(ii)當(dāng)FD與CG所在直線不平行時(shí),四邊形ADCB是等腰梯形,則DC=FG,
∴m=4,
∴點(diǎn)G的坐標(biāo)是(4,1),
設(shè)直線DG的函數(shù)解析式為y=mx+n,
把點(diǎn)D,G的坐標(biāo)代入,得
4=m+n
1=4m+n
,
解得:
m=-1
n=5

∴直線DG的函數(shù)解析式是y=-x+5,
綜上所述,所求直線DG的函數(shù)解析式是y=-2x+6或y=-x+5.
點(diǎn)評(píng):此題屬于二次函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法求函數(shù)解析式,坐標(biāo)與圖形性質(zhì),相似三角形的判定與性質(zhì),平行四邊形及梯形的性質(zhì),熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•石景山區(qū)二模)如圖,△ABC中,DE是AC的垂直平分線,AE=4cm,△ABD的周長(zhǎng)為14cm,則△ABC的周長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•石景山區(qū)二模)一射擊運(yùn)動(dòng)員在一次射擊練習(xí)中打出的成績(jī)?nèi)缦卤硭荆哼@次成績(jī)的眾數(shù)、平均數(shù)是( 。
成績(jī)(環(huán)) 6 7 8 9 10
次數(shù) 1 2 2 4 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•石景山區(qū)二模)甲盒裝有3個(gè)紅球和4個(gè)黑球,乙盒裝有3個(gè)紅球、4個(gè)黑球和5個(gè)白球.這些球除了顏色外沒(méi)有其他區(qū)別.?dāng)噭騼珊兄械那,從盒中分別任意摸出一個(gè)球.正確說(shuō)法是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•石景山區(qū)二模)如圖,AB是⊙O的直徑,C是⊙O上的一點(diǎn),若AC=8,AB=10,OD⊥BC于點(diǎn)D,則BD的長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•石景山區(qū)二模)若二次函數(shù)y=x2+bx+7配方后為y=(x-1)2+k,則b、k的值分別為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案