在△ABC中,∠A=30°,∠B=60°,AC=6,則△ABC外接圓的半徑為( 。
A、2
3
B、3
3
C、
3
D、3
分析:先求得∠C=90°,BC=
1
2
AB,△ABC外接圓的直徑為AB,再由勾股定理得,AB=4
3
,所以△ABC外接圓的半徑為2
3
解答:解:∵∠A=30°,∠B=60°,
∴∠C=90°,
∴BC=
1
2
AB,△ABC外接圓的直徑為AB,
由勾股定理得,AB=4
3
,
∴△ABC外接圓的半徑為2
3

故選A.
點評:此題考查了三角形的外接圓的性質(zhì),直角三角形的外接圓的圓心在斜邊上;還考查了直角三角形的性質(zhì),30°角所對的直角邊是斜邊的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點D,交AC于點E、已知△ABC中與△ABD的周長分別為18cm和12cm,則線段AE的長等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長為( 。
A、
2
B、
3
C、2
D、以上都不對

查看答案和解析>>

同步練習(xí)冊答案