【題目】在中,平分交于點是上的一點(不與點重合),于點.
(1)若,如圖1,當點與點重合時,求的度數(shù);
(2)當是銳角三角形時,如圖2,試探索之間的數(shù)量關(guān)系,并說明理由.
【答案】(1)150°;(2),見解析
【解析】
(1)由三角形的內(nèi)角和得到∠BAC=180°60°30°=90°,根據(jù)角平分線定義得到∠BAQ=∠QAC=∠BAC=45°,由垂直的定義得到∠PHQ=90°,于是得到∠QPH=∠QAH=90°75°=15°;
(2)如圖2,過A作AG⊥BC于G,得到∠PHQ=∠AGQ=90°,根據(jù)平行線的性質(zhì)得到∠QPH=∠QAG,設(shè)∠QPH=∠QAG=x,根據(jù)角平分線的定義得到∠BAQ=∠QAC=x+∠GAC,列方程即可得到結(jié)論.
解:,
,.
平分,
,
,
如圖,過點作于點,
則,
設(shè)
平分
img src="http://thumb.zyjl.cn/questionBank/Upload/2020/11/27/16/37948ee7/SYS202011271638291059812140_DA/SYS202011271638291059812140_DA.023.png" width="206" height="22" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />
又
.
,
即.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD交于點O,AB=AC,點E是BD上一點,且AE=AD,∠EAD=∠BAC.
⑴ 求證:∠ABD=∠ACD;
⑵ 若∠ACB=65°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將正面分別標有數(shù)字1、2、3的三張卡片洗勻后,背面朝上放在桌面上請完成下列各題
(1)隨機抽取1張,求抽到卡片數(shù)字是奇數(shù)的概率;
(2)隨機抽取一張作為十位上的數(shù)字(不放回),再抽取一張作為個位上的數(shù)字,能組成哪些兩位數(shù)?
(3)在(2)的條件下,試求組成的兩位數(shù)是偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由不同生產(chǎn)商提供套校服參加比選,甲、乙、兩三個同學分別參加比選,比選后結(jié)果是:每套校服至少有一人選中,且每人都選中了其中的套校服.如果將其中只有人選中的校服稱作“不受歡迎校服”,人選中的校服稱作“頗受歡迎校服”,人都選中的校服稱作“最受歡迎校服”,則“不受歡迎校服”比“最受歡迎校服”多________________套.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】五一節(jié)前夕,某商店從廠家購進兩種禮盒,已知兩種禮盒的單價比為,單價和為元
(1)求兩種禮盒的單價分別是多少元?
(2)該商店購進這兩種禮盒恰好用去元,且購進種禮盒最多個,種禮盒的數(shù)量不超過種禮盒數(shù)量的倍,共有哪幾種進貨方案?
(3)根據(jù)市場行情,銷售一個種禮盒可獲利元,銷售一個種禮盒可獲利元.為奉獻愛心,該商店決定每售出一個種禮盒,為愛心公益基金捐款元,每個種禮盒的利潤不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,的值是多少?此時該商店可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結(jié)論.①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正確的是____________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“龜兔賽跑”的故事同學們都非常熟悉,圖中的線段OD 和折線 OABC 表示“龜兔賽跑”時的路程與時間關(guān)系,請你根據(jù)圖中給出的信息,解決下列問題:
(1)折線 OABC 表示賽跑過程中_______的路程與時間的關(guān)系, 線段 OD 表示賽跑過程中_______的路程與時間的關(guān)系, 賽跑的全程是________米.
(2)兔子在起初每分鐘跑多少米,烏龜用多少分鐘追上了正在睡覺的兔子.
(3)兔子醒來,以 48 千米/小時的速度跑向終點,結(jié)果還是比烏龜晚到 0.5 分鐘,請你算算兔子中間停下睡覺用了多少分鐘?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com