點(diǎn)A為數(shù)軸上表示一2的點(diǎn),當(dāng)點(diǎn)A沿?cái)?shù)軸移動(dòng)4個(gè)單位長(zhǎng)時(shí),它所表示的數(shù)是
[     ]
A.2    
B.2或一6
C.一6  
D.不同于以上答案
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一個(gè)數(shù)的絕對(duì)值的倒數(shù)為
13
,這個(gè)數(shù)是
 
;|-5|可以理解為數(shù)軸上表示
 
的點(diǎn)到
 
的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有一直徑MN=4的半圓形紙片,其圓心為點(diǎn)P,從初始位置Ⅰ開始,在無滑動(dòng)的情況下沿?cái)?shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點(diǎn)O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸,位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中的點(diǎn)N到數(shù)軸的距離為3,且半⊙P與數(shù)軸相切于點(diǎn)A.
解答下列問題:
(1)紙片半⊙P從位置Ⅲ翻滾到位置Ⅳ時(shí),該紙片所掃過圖形的面積;
(2)求位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù);
(3)求點(diǎn)A在數(shù)軸上表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:數(shù)軸上A.B兩點(diǎn)表示的有理數(shù)為a、b,且(a-1)2+|b+2|=0.
(1)A、B各表示哪一個(gè)有理數(shù)?
(2)點(diǎn)C在數(shù)軸上表示的數(shù)是c,且與A、B兩點(diǎn)的距離和為11,求多項(xiàng)式a(bc+3)-|c2-3(a-
19
c2)|的值;
(3)小螞蟻甲以1個(gè)單位長(zhǎng)度/秒的速度從點(diǎn)B出發(fā)向其左邊6個(gè)單位長(zhǎng)度處的一顆飯粒爬去,3秒后位于點(diǎn)A的小螞蟻乙收到它的信號(hào),以2個(gè)單位長(zhǎng)度/秒的速度也迅速爬向飯粒,小螞蟻甲到達(dá)后背著飯粒立即返回,與小螞蟻乙在數(shù)軸上D點(diǎn)相遇,則點(diǎn)D表示的有理數(shù)是什么?從出發(fā)到此時(shí),小螞蟻甲共用去多少時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,并回答問題.
畫一個(gè)直角三角形,使它的兩條直角邊分別為5和12,那么我們可以量得直角三角形的斜邊長(zhǎng)為13,并且52+122=132.事實(shí)上,在任何一個(gè)直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方.如果直角三角形中,兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,則a2+b2=c2,這個(gè)結(jié)論就是著名的勾股定理.
請(qǐng)利用這個(gè)結(jié)論,完成下面的活動(dòng):
(1)一個(gè)直角三角形的兩條直角邊分別為6、8,那么這個(gè)直角三角形斜邊長(zhǎng)為
10
10

(2)滿足勾股定理方程a2+b2=c2的正整數(shù)組(a,b,c)叫勾股數(shù)組.例如(3,4,5)就是一組勾股數(shù)組.觀察下列幾組勾股數(shù)
①3,4,5; ②5,12,13; ③7,24,25;④9,40,41;
請(qǐng)你寫出有以上規(guī)律的第⑤組勾股數(shù):
11,60,61
11,60,61

(3)如圖,AD⊥BC于D,AD=BD,AC=BE.AC=3,DC=1,求BD的長(zhǎng)度.

(4)如圖,點(diǎn)A在數(shù)軸上表示的數(shù)是
-
5
-
5
,請(qǐng)用類似的方法在下圖數(shù)軸上畫出表示數(shù)
3
的B點(diǎn)(保留作圖痕跡).

查看答案和解析>>

同步練習(xí)冊(cè)答案