【題目】在一次試驗中,小明把一根彈簧的上端固定,在其下端懸掛物體,測得彈簧的長度與所掛物體的質(zhì)量之間的關(guān)系如下表:

所掛物體質(zhì)量

0

1

2

3

4

5

彈簧的長度

8

10

12

14

16

18

下列說法錯誤的是(

A.彈簧的長度隨所掛物體質(zhì)量的變化而變化,所掛物體質(zhì)量是自變量,彈簧長度是因變量

B.不掛物體時,彈簧的長度為

C.彈簧的長度與所掛物體的質(zhì)量之間的關(guān)系式是

D.在彈性限度內(nèi),當(dāng)所掛物體的質(zhì)量為時,彈簧的長度為

【答案】C

【解析】

根據(jù)表格與函數(shù)之間的關(guān)系即可依次判斷.

A. 彈簧的長度隨所掛物體質(zhì)量的變化而變化,所掛物體質(zhì)量是自變量,彈簧長度是因變量,正確;

B. 不掛物體時,彈簧的長度為,正確;

C. 彈簧的長度與所掛物體的質(zhì)量之間的關(guān)系式是,故錯誤;

D. 在彈性限度內(nèi),當(dāng)所掛物體的質(zhì)量為時,彈簧的長度為=,正確;

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為4的正方形ABCD沿著折痕EF折疊,使點B落在邊AD的中點G.

(1)求線段BE的長;

(2)連接BF、GF,求證:BF=GF;

(3)求四邊形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉淇準(zhǔn)備完成題目:化簡:,發(fā)現(xiàn)系數(shù)印刷不清楚.

(1)他把猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);

(2)他媽媽說:你猜錯了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).通過計算說明原題中是幾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了安全,請勿超速,如圖所示是一條已經(jīng)建成并通車的公路,且該公路的某直線路段MN上限速17m/s,為了檢測來往車輛是否超速,交警在MN旁設(shè)立了觀測點C.若某次從觀測點C測得一汽車從點A到達點B行駛了5秒鐘,已知∠CAN=45°,CBN=60°,BC=200m.

(1)求觀測點C到公路MN的距離;

(2)請你判斷該汽車是否超速?(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線CBOA,∠C=A=120°,E、FCB上,且滿足∠FOB=AOB,OE平分∠COF

1)求∠EOB的度數(shù);

2)若平行移動AB,那么∠OBC:∠OFC的值是否隨之發(fā)生變化?若變化,找出變化規(guī)律或求出變化范圍;若不變,求出這個比值;

3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=OBA?若存在,求出其度數(shù);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知A(2t,0),B(0,-2t),C(2t,4t)三點,其中t>0,函數(shù)的圖象分別與線段BC,AC交于點P,Q.若SPAB-SPQB=t,則t的值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家飲水機中原有水的溫度為20℃,通電開機后,飲水機自動開始加熱[此過程中水溫y(℃)與開機時間x(分)滿足一次函數(shù)關(guān)系],當(dāng)加熱到100℃時自動停止加熱,隨后水溫開始下降[此過程中水溫y(℃)與開機時間x(分)成反比例關(guān)系],當(dāng)水溫降至20℃時,飲水機又自動開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:

(1)當(dāng)0≤x≤8時,求水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式;

(2)求圖中t的值;

(3)若小明在通電開機后即外出散步,請你預(yù)測小明散步45分鐘回到家時,飲水機內(nèi)的溫度約為多少℃?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各式:

1)解不等式,并把它的解集在數(shù)軸上表示出來.

2)解方程組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給下列證明過程填寫理由.

如圖,CDABD,點FBC上任意一點,EFABE,∠1=∠2,求證:ACB=∠3

請閱讀下面解答過程,并補全所有內(nèi)容.

解:CDAB,EFAB(已知)

∴∠BEF=∠BDC=90°

EFDC

∴∠2=________

∵∠2=∠1(已知)

∴∠1=_______(等量代換)

DGBC

∴∠3=________

查看答案和解析>>

同步練習(xí)冊答案