【題目】箱子里有3個紅球和2個黃球,從箱子中一次拿兩個球出來.
(1)請你用列舉法(樹形圖或列表)求一次拿出的兩個球中時一紅一黃的概率;
(2)往箱子中再加入x個白球,從箱子里一次拿出的兩個球,多次實驗統(tǒng)計如下
取出兩個球的次數(shù) | 20 | 30 | 50 | 100 | 150 | 200 | 400 |
至少有一個球是白球的次數(shù) | 13 | 20 | 35 | 71 | 107 | 146 | 288 |
至少有一個球是白球的頻率 | 0.65 | 0.67 | 0.70 | 0.71 | 0.713 | 0.73 | 0.72 |
請你估計至少有一個球是白球的概率是多少?
(3)在(2)的條件下求x的值.(=0.7222222…)
【答案】(1);(2)0.72;(3) x=4是原分式方程的解
【解析】
(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與一次拿出的兩個球中時一紅一黃的情況,再利用概率公式即可求得答案;
(2)觀察表格,即可求得答案;
(3)由共有(x+5)(x+4)取法,至少有一個球是白球的有:(x+5)(x+4)-20,可得=,繼而求得答案.
(1)畫樹狀圖得:
∵共有20種等可能的結(jié)果,一次拿出的兩個球中時一紅一黃的有12種情況,
∴一次拿出的兩個球中時一紅一黃的概率為:=;
(2)觀察可得:至少有一個球是白球的概率是:0.72;
(3)∵共有(x+5)(x+4)取法,至少有一個球是白球的有:(x+5)(x+4)﹣20,
∴=,
解得:x=4,
經(jīng)檢驗,x=4是原分式方程的解.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一透明圓柱形無蓋容器高12cm,底面周長24cm,在杯口點B處有一滴蜂蜜,此時一只螞蟻在杯外壁底部與蜂蜜相對的A處.
(1)若蜂蜜固定不動,求螞蟻吃到蜂蜜所爬行的最短路線長;
(2)若該螞蟻剛出發(fā)時發(fā)現(xiàn)B處的蜂蜜正以0.5cm/s的速度沿杯內(nèi)壁下滑,它便沿最短路徑在8秒鐘時吃到了蜂蜜,求此螞蟻爬行的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點C逆時針旋轉(zhuǎn),當(dāng)點E在線段BC上時,連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2,CE=2,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一次函數(shù)(k,b為常數(shù)),下表中給出5組自變量及其對應(yīng)的函數(shù)值:
…… | -1 | 0 | 1 | 2 | 3 | ||
…… | -2 | 1 | 4 | 8 | 10 | …… |
其中只有1個函數(shù)值計算有誤,則這個錯誤的函數(shù)值是( )
A.1B.4C.8D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以Rt△ABC的斜邊AB、直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB中點,連接DF、EF,DE、EF與AC交于點O,DE與AB交于點G,連接OG,若∠BAC=30°,下列結(jié)論:①△DBF≌△EFA;②AD=AE;③EF⊥AC;④AD=4AG;⑤△AOG與△EOG的面積比為1:4.其中正確的結(jié)論的序號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.
(1)求出空地ABCD的面積.
(2)若每種植1平方米草皮需要200元,問總共需投入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,的頂點坐標分別為A(2,3)、B (1,1)、C(2,1)
(1)畫出關(guān)于軸對稱的,并寫出點的坐標為_________
(2)將向左平移4個單位長度得到,直接寫出點的坐標為_________
(3)直接寫出點B關(guān)于直線n(直線n上各點的縱坐標都為-1)對稱點B'的坐標為________
(4)在軸上找一點P,使PA+PB的值最小,標出P點的位置(保留畫圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C、E分別在直線AB、DF上,小華想知道∠ACE和∠DEC是否互補,但是他沒有帶量角器,只帶了一副三角板,于是他想了這樣一個辦法:首先連結(jié)CF,再找出CF的中點O,然后連結(jié)EO并延長EO和直線AB相交于點B,經(jīng)過測量,他發(fā)現(xiàn)EO=BO,因此他得出結(jié)論:∠ACE和∠DEC互補,而且他還發(fā)現(xiàn)BC=EF.小華的想法對嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com