【題目】一個正方形AOBC各頂點的坐標(biāo)分別為A(0,3),O(0,0),B(3,0),C(3,3).若以原點為位似中心,將這個正方形的邊長縮小為原來的,則新正方形的中心的坐標(biāo)為_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市為方便行人過馬路,打算修建一座高為4x(m)的過街天橋.已知天橋的斜面坡度i=1:0.75是指坡面的鉛直高度DE(CF)與水平寬度AE(BF)的比,其中DC∥AB,CD=8x(m).
(1)請求出天橋總長和馬路寬度AB的比;
(2)若某人從A地出發(fā),橫過馬路直行(A→E→F→B)到達(dá)B地,平均速度是2.5m/s;返回時從天橋由BC→CD→DA到達(dá)A地,平均速度是1.5m/s,結(jié)果比去時多用了12.8s,請求出馬路寬度AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】與是兩塊全等的含的三角板,按如圖①所示拼在一起,與重合.
(1)求證:四邊形為平行四邊形;
(2)取中點,將繞點順時針方向旋轉(zhuǎn)到如圖位置,直線與分別相交于兩點,猜想長度的大小關(guān)系,并證明你的猜想;
(3)在(2)的條件下,當(dāng)旋轉(zhuǎn)角為多少度時,四邊形為菱形.并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).
(1)把△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;
(3)如果網(wǎng)格中小正方形的邊長為1,求點B經(jīng)過(1)、(2)變換的路徑總長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與雙曲線相交于點A(m,3),與x軸交于點C.
(1)求雙曲線的解析式;
(2)點P在x軸上,如果△ACP的面積為3,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年“清明節(jié)”前夕,宜賓某花店用1000元購進(jìn)若干菊花,很快售完,接著又用2500元購進(jìn)第二批
花,已知第二批所購花的數(shù)量是第一批所購花數(shù)的2倍,且每朵花的進(jìn)價比第一批的進(jìn)價多元.
(1)第一批花每束的進(jìn)價是多少元.
(2)若第一批菊花按3元的售價銷售,要使總利潤不低于1500元(不考慮其他因素),第二批每朵菊花的售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)
(1)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;
(2)轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延長線上.請解答下列問題:
(1)圖中與∠DBE相等的角有: ;
(2)直接寫出BE和CD的數(shù)量關(guān)系;
(3)若△ABC的形狀、大小不變,直角三角形BEC變?yōu)閳D2中直角三角形BED,∠E=90°,且∠EDB=∠C,DE與AB相交于點F.試探究線段BE與FD的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將任意一個等腰直角三角板△ABC放至平面直角坐標(biāo)系xOy中,直角頂點A(a,0)在x軸的負(fù)半軸,點B(0,b)在y軸的正半軸,點C落在第二象限,
(1)若=﹣b2+4b﹣4,求C點坐標(biāo);
(2)如圖2,再將任意的一個等腰直角三角板△DEF放至平面直角坐標(biāo)系xOy中,點E在x軸的正半軸上,F在y軸的負(fù)半軸上,直角頂點D落在第四象限,設(shè)點G為BC的中點,證明:點D,O,G三點剛好在同一條直線上;
(3)已知a=﹣4,b<4.如圖3,點O關(guān)于直線AB的對稱點為點H,AH交線段BC于點P,PR⊥x軸于點R,求△APR的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com