我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱(chēng)這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱(chēng)為這個(gè)四邊形的勾股邊.

(1)寫(xiě)出你所學(xué)過(guò)的特殊四邊形中是勾股四邊形的兩種圖形的名稱(chēng)_________,________;

(2)如圖,已知格點(diǎn)(小正方形的頂點(diǎn)),,請(qǐng)你寫(xiě)出所有以格點(diǎn)為頂點(diǎn),為勾股邊且對(duì)角線相等的勾股四邊形的頂點(diǎn)M的坐標(biāo);


(3)如圖,將繞頂點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),得到,連結(jié),.求證:,即四邊形是勾股四邊形.


解:

(1).長(zhǎng)方形 .,正方形.

(2). M1(3, 4)   M2(4, 3)  

 (3).證明:;連結(jié)EC

∵ABC≌DBE              

∴BC=BE   AC=DE

又∵∠CBE=600

∴CBE是等邊三角形                                  

∴∠BCE=600     BC=EC

又∵∠DCB=300                            

∴∠BCE+∠DCB=900

即∠DCE=900                      .

 DC2+EC2=AC2

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、我們給出如下定義:若一個(gè)四邊形的兩條對(duì)角線相等,則稱(chēng)這個(gè)四邊形為等對(duì)角線四邊形.請(qǐng)解答下列問(wèn)題:
(1)寫(xiě)出你所學(xué)過(guò)的特殊四邊形中是等對(duì)角線四邊形的兩種圖形的名稱(chēng);
(2)探究:當(dāng)?shù)葘?duì)角線四邊形中兩條對(duì)角線所夾銳角為60°時(shí),這對(duì)60°角所對(duì)的兩邊之和與其中一條對(duì)角線的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱(chēng)這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱(chēng)為這個(gè)四邊形的勾股邊.
(1)除了正方形外,寫(xiě)出你所學(xué)過(guò)的特殊四邊形中是勾股四邊形的兩種圖形的名稱(chēng):
矩形、直角梯形

(2)如圖1,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4),請(qǐng)你畫(huà)出以格點(diǎn)為頂點(diǎn),OA,OB為勾股邊且對(duì)角線相等的勾股四邊形OAMB,并寫(xiě)出點(diǎn)M的坐標(biāo);
(3)如圖2,以△ABC的邊AB,AC為邊,向三角形外作正方形ABDE及ACFG,連接CE,BG相交于O點(diǎn),P是線段DE上任意一點(diǎn).求證:四邊形OBPE是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱(chēng)這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱(chēng)為這個(gè)四邊形的勾股邊.
(1)寫(xiě)出你所學(xué)過(guò)的特殊四邊形中是勾股四邊形的兩種圖形的名稱(chēng)
矩形
,
正方形
;
(2)如圖,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4),請(qǐng)你畫(huà)出以格點(diǎn)為頂點(diǎn),OA,OB為勾股邊且對(duì)角線相等的勾股四邊形OAMB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱(chēng)這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱(chēng)為這個(gè)四邊形的勾股邊.
(1)寫(xiě)出你所知道的特殊四邊形中是勾股四邊形的兩種圖形的名稱(chēng)
正方形
,
長(zhǎng)方形

(2)如下圖(1),請(qǐng)你在圖中畫(huà)出以格點(diǎn)為頂點(diǎn),OA、OB為勾股邊,且對(duì)角線相同的所有勾股四邊形OAMB.
(3)如圖(2),以△ABC邊AB作如圖正三角形ABD,∠CBE=60°,且BE=BC,連接DE、DC,∠DCB=30°.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們給出如下定義:若一個(gè)四邊形ABCD中AC⊥BD,BD平分AC,則稱(chēng)這個(gè)四邊形為箏形四邊形.
(1)小明說(shuō):“箏形四邊形一定是菱形”.你認(rèn)為小明的說(shuō)法是否正確?若正確請(qǐng)說(shuō)明理由;若不正確,請(qǐng)舉個(gè)反例說(shuō)明.
(3)在箏形ABCD中,AD=CD,AB=BC,若∠ADC=∠ABC,tan∠DAC=1.求證:箏形ABCD是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案