【題目】某商店銷售兩種商品,每件的售價分別為元、元,五一期間,該商店決定對這兩種商品進行促銷活動,如圖所示,若小紅打算到該商店購買商品和商品,根據(jù)以上信息,請:

1)分別用含的代數(shù)式表示按照方案一和方案二所需的費用

2)就的不同取值,請說明選擇那種方案購買更實惠(兩種優(yōu)惠方案不能同時享受)

【答案】1;(2)當m=35時,選方案一和方案二一樣實惠;當m>35時,選方案一更實惠;當m<35時,選方案二更實惠.

【解析】

1)由題意小紅打算到該商店購買商品和商品,分別建立的代數(shù)式即可;

2)根據(jù)題意分當=時和當<時以及>進行計算分析即可.

解:(1)由題意小紅打算到該商店購買商品和商品,可得:

(元);

(元);

2)當=時,有=,解得m=35;

<時,有<,解得m>35;

>時,有>,解得m<35;

所以當m=35時,選方案一和方案二一樣實惠;當m>35時,選方案一更實惠;當m<35時,選方案二更實惠.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=BC,∠ABC=45°,點DAC的中點,連接BD,作AEBCE,交BD于點F,點GBC的中點,連接FG,過點BBHABFG的延長線于H

1)若AB=3,求AF的長;

2)求證;BH+2CE=AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,點A、B分別在x、y軸上,點B的坐標為(0,1),∠BAO=30°.

(1)求AB的長度;

(2)以AB為一邊作等邊ABE,作OA的垂直平分線MN交AB的垂線AD于點D.求證:BD=OE;

(3)在(2)的條件下,連接DE交AB于F.求證:F為DE的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著“低碳生活、綠色出行”理念的普及,新能源汽車在逐漸成為人們喜愛的交通工具,某汽車銷售公司計劃購進一批新能源汽車嘗試進行銷售,據(jù)了解,2A型汽車,3B型汽車的進價共計80萬元;3A型汽車,2B型汽車的進價共計95萬元.

1)問A、B兩種型號的汽車每輛進價分別為多少萬元?

2)若該公司計劃用200萬元購進以上兩種型號的新能源汽車(兩種型號的汽車均購買)請你幫助該公司設(shè)計購買方案;

3)若該汽車銷售公司銷售1A型汽車可獲利800元,銷售1B型汽車可獲利500元;在②的購買方案中,假如這些新能源汽車全部售出,哪種方案獲利最大?最大利潤多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABCD,點EAB上,點GCD上,點 F 在直線 AB,CD之間,連接EF,F(xiàn)G,EF垂直于 FG,∠FGD =125°

(1)求出∠BEF的度數(shù);

(2)如圖 2,延長FEH,MFH的上方,連接MH,Q為直線 AB 上一點,且在直線 MH 的右側(cè), 連接 MQ,∠EHM=∠M +90°,求∠MQA 的度數(shù);

(3)如圖 3,S NB 上一點,T GD 上一點,作直線 ST,延長 GF AB 于點 N,P 為直線 ST 上一動點,請直接寫出∠PGN,∠SNP ∠GPN 的數(shù)量關(guān)系 .(題中所有角都是大于小于 180°的角)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABCD的頂點的坐標分別為A(﹣6,9),B(0,9),C(3,0),D(﹣3,0),拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)過A、B兩點,頂點為M.

(1)若拋物線過點C,求拋物線的解析式;
(2)若拋物線的頂點M落在△ACD的內(nèi)部(包括邊界),求a的取值范圍;
(3)若a<0,連結(jié)CM交線段AB于點Q(Q不與點B重合),連接DM交線段AB于點P,設(shè)S1=SADP+SCBQ , S2=SMPQ , 試判斷S1與S2的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,利用標桿 測量建筑物的高度,標桿 ,測得 ,則樓高 為=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ACE是以ABCD的對角線AC為邊的等邊三角形,點C與點E關(guān)于x軸對稱.若E點的坐標是(7,﹣3 ),則D點的坐標為( 。

A. 3,0

B. 4,0

C. 50

D. 6,0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BC5,高AD、BE相交于點O,BDCD,且AEBE

1)求線段AO的長;

2)動點P從點O出發(fā),沿線段OA以每秒1個單位長度的速度向終點A運動,動點Q從點B出發(fā)沿射線BC以每秒4個單位長度的速度運動,P、Q兩點同時出發(fā),當點P到達A點時,P、Q兩點同時停止運動.設(shè)點P的運動時間為t秒,POQ的面積為S,請用含t的式子表示S,并直接寫出相應的t的取值范圍;

3)在(2)的條件下,點F是直線AC上的一點且CFBO.是否存在t值,使以點B、O、P為頂點的三角形與以點F、CQ為頂點的三角形全等?若存在,請直接寫出符合條件的t值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案