【題目】某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調查與預測,種植樹木的利潤y1與投資量x成正比例關系,種植花卉的利潤y2與投資量x的平方成正比例關系,并得到了表格中的數(shù)據(jù).

投資量x(萬元)

2

種植樹木利潤y1(萬元)

4

種植花卉利潤y2(萬元)

2


(1)分別求出利潤y1與y2關于投資量x的函數(shù)關系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,設他投入種植花卉金額m萬元,種植花卉和樹木共獲利利潤W萬元,直接寫出W關于m的函數(shù)關系式,并求他至少獲得多少利潤?他能獲取的最大利潤是多少?
(3)若該專業(yè)戶想獲利不低于22萬,在(2)的條件下,直接寫出投資種植花卉的金額m的范圍.

【答案】
(1)解:設y1=kx,

由表格數(shù)據(jù)可知,函數(shù)y1=kx的圖象過(2,4),

∴4=k2,

解得:k=2,

故利潤y1關于投資量x的函數(shù)關系式是y1=2x(x≥0);

∵設y2=ax2,

由表格數(shù)據(jù)可知,函數(shù)y2=ax2的圖象過(2,2),

∴2=a22,

解得:a= ,

故利潤y2關于投資量x的函數(shù)關系式是:y2= x2(x≥0);


(2)解:因為種植花卉m萬元(0≤m≤8),則投入種植樹木(8﹣m)萬元,

w=2(8﹣m)+ m2= m2﹣2m+16= (m﹣2)2+14,

∵a=0.5>0,0≤m≤8,

∴當m=2時,w的最小值是14,

∵a= >0,

∴當m>2時,w隨m的增大而增大

∵0≤m≤8,

∴當m=8時,w的最大值是32,

答:他至少獲得14萬元利潤,他能獲取的最大利潤是32萬元.


(3)解:根據(jù)題意,當w=22時, (m﹣2)2+14=22,

解得:m=﹣2(舍)或m=6,

故:6≤m≤8.


【解析】(1)根據(jù)題意設y1=kx、y2=ax2,將表格中數(shù)據(jù)分別代入求解可得;(2)由種植花卉m萬元(0≤m≤8),則投入種植樹木(8﹣m)萬元,根據(jù)“總利潤=花卉利潤+樹木利潤”列出函數(shù)解析式,利用二次函數(shù)的性質求得最值即可;(3)根據(jù)獲利不低于22萬,列出不等式求解可得.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】將兩個直角三角尺的頂點O疊放在一起

1)如圖(1)若∠BOD=35°,則∠AOC=___;若∠AOC=135°,則∠BOD=___;

2)如圖(2)若∠AOC=140°,則∠BOD=___

3)猜想∠AOC與∠BOD的大小關系,并結合圖(1)說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項,得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯誤變形的個數(shù)是( 。﹤

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了豐富學生課余生活,決定開設以下體育課外活動項目:A.版畫 B.保齡球C.航模 D.園藝種植,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調查的學生共有人;
(2)請你將條形統(tǒng)計圖(2)補充完整;
(3)在平時的保齡球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加保齡球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn),求證:四邊形AFCE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點A為半圓O直徑MN所在直線上一點,射線AB垂直于MN,垂足為A,半圓繞M點順時針轉動,轉過的角度記作a;設半圓O的半徑為R,AM的長度為m,回答下列問題:
探究:
(1)若R=2,m=1,如圖1,當旋轉30°時,圓心O′到射線AB的距離是;如圖2,當a=°時,半圓O與射線AB相切;
(2)如圖3,在(1)的條件下,為了使得半圓O轉動30°即能與射線AB相切,在保持線段AM長度不變的條件下,調整半徑R的大小,請你求出滿足要求的R,并說明理由.
(3)發(fā)現(xiàn):如圖4,在0°<α<90°時,為了對任意旋轉角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個量的關系,請你幫助他直接寫出這個關系;cosα=(用含有R、m的代數(shù)式表示)
(4)拓展:如圖5,若R=m,當半圓弧線與射線AB有兩個交點時,α的取值范圍是 , 并求出在這個變化過程中陰影部分(弓形)面積的最大值(用m表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OMAB

1)∠AOC的鄰補角為    (寫出一個即可);

2)若∠1=∠2,判斷ONCD的位置關系,并說明理由;

3)若∠1=BOC,求∠MOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若a,b,c表示△ABC的三邊長,且滿足+|a-12|+(b-13)2=0,則△ABC是( )

A. 等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等邊三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察一列數(shù):1,2,4,8,16我們發(fā)現(xiàn),這一列數(shù)從第二項起,每一項與它前一項的比都等于2.一般地,如果一列數(shù)從第二項起,每一項與它前一項的比都等于同一個常數(shù),這一列數(shù)就叫做等比數(shù)列,這個常數(shù)就叫做等比數(shù)列的公比.

(1)等比數(shù)列3,-12,48的第4項是______;

(2)如果一列數(shù)a1a2,a3a4,是等比數(shù)列,且公比為q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3,則a5=_______,an=______(a1q的式子表示)

(3)一個等比數(shù)列的第2項是9,第4項是36,求它的公比.

查看答案和解析>>

同步練習冊答案