如圖,AB、CD是⊙O的直徑,DF、BE是弦,且DF=BE.求證:∠D = ∠B.
根據(jù)在同圓中等弦對(duì)的弧相等,AB、CD是⊙O的直徑,則弧CFD=弧AEB,由FD=EB,得,弧FD=弧EB,由等量減去等量仍是等量得:弧CFD-弧FD=弧AEB-弧EB,即弧FC=弧AE,由等弧對(duì)的圓周角相等,得∠D=∠B.
方法(一)
證明:∵AB、CD是⊙O的直徑,
∴弧CFD=弧AEB.
∵FD=EB,
∴弧FD=弧EB.
∴弧CFD-弧FD=弧AEB-弧EB.
即弧FC=弧AE.
∴∠D=∠B.
方法(二)
證明:如圖,連接CF,AE.
∵AB、CD是⊙O的直徑,
∴∠F=∠E=90°(直徑所對(duì)的圓周角是直角).
∵AB=CD,DF=BE,
∴Rt△DFC≌Rt△BEA(HL).
∴∠D=∠B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
(2011•泰安)如圖,⊙O的弦AB垂直平分半徑OC,若AB=
,則⊙O的半徑為( 。
A、
B、
C、
D
、
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(本小題滿分5分)
已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC、AC于點(diǎn)D、E,聯(lián)結(jié)EB交OD于點(diǎn)F.
(1)求證:OD⊥BE;
(2)若DE=
,AB=5,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
如圖,將一個(gè)半徑為3,圓心角為60o的扇形AOB,如圖放置在直線l上(OA與直線l重合),然后將這個(gè)扇形在直線l上無(wú)摩擦滾動(dòng)至O’A’B’的位置,在這個(gè)過(guò)程中,點(diǎn)O運(yùn)動(dòng)到點(diǎn)O’的 路徑長(zhǎng)度為
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
勞技課上,王紅制成了一頂圓錐形紙帽,已知紙帽底面圓半徑為10cm,母線長(zhǎng)50cm,則制成一頂這樣的紙帽所需紙面積至少為_(kāi)___ _cm2.(不取近似值)
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
如圖3若∠A=600,則∠BOD= ,∠BCD= ;
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
如圖,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,P為CD中點(diǎn),若點(diǎn)P在以AC為直徑的圓周上,則∠A=
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
如圖,等邊三角形ABC內(nèi)接于⊙O,連接OB、OC,那么∠BOC的度數(shù)是
A.150° B.120° C.90° D.60°
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知P是⊙O外一點(diǎn),PA切⊙O于A, PB切⊙O于B。若PA=6,則PB=
查看答案和解析>>