【題目】已知點E、F分別是ABCD的邊BC、AD的中點.

1)求證:四邊形AECF是平行四邊形;

2)若BC10,∠BAC90°,求AECF的周長.

【答案】1)證明見解析;(220.

【解析】

1)根據(jù)平行四邊形的判定和性質(zhì)即可得到結(jié)論;

2)根據(jù)直角三角形的性質(zhì)得到AE=CE=BC=5,推出四邊形AECF是菱形,于是得到結(jié)論.

1)證明:∵四邊形ABCD是平行四邊形,

ADBCADBC,

∵點E、F分別是ABCD的邊BCAD的中點,

AF=ADCEBC,

AFCEAFCE,

∴四邊形AECF是平行四邊形;

2)∵BC10,∠BAC90°,EBC的中點.

AECEBC5,

∴四邊形AECF是菱形,

AECF的周長=4×520

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為2的圓O與含30°角的直角三角板ABCAB邊切于點A,將直角三角板沿BA邊所在的直線向右平移,當平移到AC與圓O相切時,該直角三角板的平移距離為(

A. B. C. 1D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知CBCA,∠ACB90°,點D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點FFGCA,交CA的延長線于點G,連接FB,交DE于點Q,得出以下結(jié)論:①ACFG;②SFABS四邊形CBFG12;③∠ABC=∠ABF;④AD2FQAC.其中正確結(jié)論的個數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,DBC邊上的一點,EAD的中點,過A點作BC的平行線交CE的延長線于點F,且AFBD,連接BF

1)求證:BDCD;

2)不在原圖添加字母和線段,對ABC只加一個條件使得四邊形AFBD是菱形,寫出添加條件并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的頂點A1,1),B3,1),規(guī)定把正方形ABCD“先沿x軸翻折,再向左平移1個單位”為一次變換,這樣連續(xù)經(jīng)過2019次變換后,正方形ABCD的頂點C的坐標為( 。

A. (﹣2018,3B. (﹣2018,﹣3

C. (﹣2016,3D. (﹣2016,﹣3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).

(1)求證無論k為何值,方程總有兩個不相等實數(shù)根;

(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;

(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“學習雷鋒活動月”中,某校九(2)班全班同學都參加了“廣告清除、助老助殘、清理垃圾、義務植樹”四個志愿活動(每人只參加一個活動).為了了解情況,小明收集整理相關(guān)的數(shù)據(jù)后,繪制如圖所示,不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

1)求該班的人數(shù);

2)請把折線統(tǒng)計圖補充完整;

3)求扇形統(tǒng)計圖中,廣告清除部分對應的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,以AB為直徑的⊙O分別與BC,AC相交于點DE,BDCD,過點D作⊙O的切線交邊AC于點F

1)求證:DFAC;

2)若⊙O的半徑為2,CF1,求的長(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,全校同時默寫50首古詩詞,每正確默寫出一首古詩詞得2分,結(jié)果有500名進入決賽,從這500名的學生中隨機抽取50名學生進行成績分析,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:(最高分98分):

組別

成績x

頻數(shù)(人數(shù))

1

50x60

6

2

60x70

8

3

70x80

14

4

80x90

a

5

90x100

10

Ⅰ.第3組的具體分數(shù)為:70,7070,7272,74,7474,7676,78,78,78,78

.50人得分平均數(shù)、中位數(shù)、眾數(shù)如表:

平均數(shù)

中位數(shù)

眾數(shù)

得分(分)

m

n

請結(jié)合圖表數(shù)據(jù)信息完成下列各題:

1)填空a   ,m   ;

2)將頻數(shù)分布直方圖補充完整;

3)若測試成績不低于80分為優(yōu)秀,估計進入決賽的本次測試為的優(yōu)秀的學生有多少?

查看答案和解析>>

同步練習冊答案