(本小題滿分9分)

如圖所示,菱形ABCD的頂點A、B在x軸上,點A在點B的左側(cè),點D在y軸的正半軸上,∠BAD=60°,點A的坐標為(-2,0).

⑴求線段AD所在直線的函數(shù)表達式.

⑵動點P從點A出發(fā),以每秒1個單位長度的速度,按照A→D→C→B→A的順序在菱形的邊上勻速運動一周,設(shè)運動時間為t秒.求t為何值時,以點P為圓心、以1為半徑的圓與對角線AC相切?

 

 

(1)

(2)t=2

解析:解:⑴∵點A的坐標為(-2,0),∠BAD=60°,∠AOD=90°,

∴OD=OA·tan60°=,

∴點D的坐標為(0,),  1分

設(shè)直線AD的函數(shù)表達式為,

,解得

∴直線AD的函數(shù)表達式為.    3分

⑵∵四邊形ABCD是菱形,

∴∠DCB=∠BAD=60°,

∴∠1=∠2=∠3=∠4=30°,

  AD=DC=CB=BA=4,   5分

如圖所示:

①點P在AD上與AC相切時,

AP1=2r=2,

∴t1=2.     6分

 

②點P在DC上與AC相切時,

CP2=2r=2,

∴AD+DP2=6,

∴t2=6.     7分

③點P在BC上與AC相切時,

CP3=2r=2,

∴AD+DC+CP3=10,

∴t3=10.    8分

④點P在AB上與AC相切時,

AP4=2r=2,

∴AD+DC+CB+BP4=14,

∴t4=14,

∴當t=2、6、10、14時,以點P為圓心、以1為半徑的圓與對角線AC相切. 9分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分7分)

如圖,已知拋物線y1=-x2+bx+c經(jīng)過A(1,0),B(0,-2)兩點,頂點為D.

1.(1)求拋物線y1 的解析式;

2.(2)將△AOB繞點A逆時針旋轉(zhuǎn)90°后,得到△AO′ B′ ,將拋物線y1沿對稱軸平移后經(jīng)過點B′ ,寫出平移后所得的拋物線y2 的解析式;

3.(3)設(shè)(2)的拋物線y2軸的交點為B1,頂點為D1,若點M在拋物線y2上,且滿足△MBB1的面積是△MDD1面積的2倍,求點M的坐標.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分6分)

如圖,在8×11的方格紙中,每個小正方形的邊長均為1,△ABC的頂點均在小正方形的頂點處.

1.(1)畫出△ABC繞點A順時針方向旋轉(zhuǎn)90°得到的△;

2.(2)求點B運動到點B′所經(jīng)過的路徑的長.    

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)

如圖1,拋物線y軸交于點A,E(0,b)為y軸上一動點,過點E的直線與拋物線交于點BC.

 

 

 

 

 

 

 


1.(1)求點A的坐標;

2.(2)當b=0時(如圖2),求的面積。

3.(3)當時,的面積大小關(guān)系如何?為什么?

4.(4)是否存在這樣的b,使得是以BC為斜邊的直角三角形,若存在,求出b;若不存在,說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011年江蘇省常州實驗初級中學(xué)九年級第二學(xué)期模擬考試數(shù)學(xué)卷 題型:解答題

(本小題滿分8分)如圖所示的矩形包書紙中,虛線是折痕,陰影是裁剪掉的部分,四個角均為大小相同的正方形,正方形的邊長為折疊進去的寬度.

【小題1】(1)設(shè)課本的長為a cm,寬為b cm,厚為c cm,如果按如圖所示的包書方式,將封面和封底 各折進去3cm,用含a,b,c的代數(shù)式,分別表示滿足要求的矩形包書紙的長與寬;
【小題2】(2)現(xiàn)有一本長為19cm,寬為16cm,厚為6cm的字典,你能用一張長為43cm,寬為26cm的矩形紙包好這本字典,并使折疊進去的寬度不小于3cm嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年河北省石家莊市42中學(xué)九年級第一次模擬考試數(shù)學(xué)卷 題型:解答題

(本小題滿分9分)
如圖,兩根鐵棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的長度是它的,另一根露出水面的長度是它的.兩根鐵棒長度之和為55 cm.
(1)根據(jù)題意,甲、乙兩個同學(xué)分別列出了尚不完整的方程(組)如下:
甲:                乙:   =55
根據(jù)甲、乙兩名同學(xué)所列的方程(組),請你分別指出未知數(shù)x,y表示的意義,然后在橫線上補全甲、乙兩名同學(xué)所列的方程(組):
甲:x表示                   ,y表示                   
乙:x表示                     ;
(2)求此時木桶中水的深度多少cm?(寫出完整的解答過程)

查看答案和解析>>

同步練習(xí)冊答案